Citation: Sheng-Jun Xu, Ya-Nan Zhou, Guo-Ping Shen, Bin Dong. Ni(OH)2 Derived from NiS2 Induced by Reflux Playing Three Roles for Hydrogen/Oxygen Evolution Reaction[J]. Chinese Journal of Structural Chemistry, ;2022, 41(8): 220805. doi: 10.14102/j.cnki.0254-5861.2022-0143 shu

Ni(OH)2 Derived from NiS2 Induced by Reflux Playing Three Roles for Hydrogen/Oxygen Evolution Reaction

Figures(6)

  • Developing efficient and promising non-noble catalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital but still a huge challenge for the clean energy system. Herein, we have integrated the active components for OER (Ni(OH)2) and HER (NiS2 and Ni(OH)2) into Ni(OH)2@NiS2 heterostructures by a facile reflux method. The in-situ formed Ni(OH)2 thin layer is coated on the surface of hollow NiS2 nanosphere. The uniform Ni(OH)2@NiS2 hollow sphere processes enlarge the electrochemically active specific surface area and enhance the intrinsic activity compared to NiS2 precursor, which affords a current density of 10 mA cm-2 at the overpotential of 309 mV and 100 mA cm-2 at 359 mV for OER. Meanwhile, Ni(OH)2@NiS2 can reach 10 mA cm-2 at 233 mV for HER, superior to pure NiS2. The enhanced performance can be attributed to the synergy between Ni(OH)2 and NiS2. Specifically, Ni(OH)2 has three functions for water splitting: providing active sites for hydrogen adsorption and hydroxyl group desorption and working as real OER active sites. Moreover, Ni(OH)2@NiS2 displays great stability for OER (50 h) and HER (30 h).
  • 加载中
    1. [1]

      Cao, X.; Zhao, L.; Wulan, B.; Tan, D.; Chen, Q.; Ma, J.; Zhang, J. Atomic bridging structure of nickel-nitrogen-carbon for highly efficient electro-catalytic reduction of CO2. Angew. Chem. Int. Ed. 2022, 61, e202113918022.

    2. [2]

      Li, M.; Feng, L. NiSe2-CoS2 with a hybrid nanorods and nanoparticles structure for efficient oxygen evolution reaction. Chin. J. Struct. Chem. 2022, 41, 2201019-2201024.

    3. [3]

      Guo, K.; Wang, Y.; Huang, J.; Lu, M.; Li, H.; Peng, Y.; Xi, P.; Zhang, H.; Huang, J.; Lu, S.; Xu, C. In situ activated Co3-xNixO4 as a highly active and ultrastable electrocatalyst for hydrogen generation. ACS Catal. 2021, 11, 8174-8182.  doi: 10.1021/acscatal.1c01607

    4. [4]

      Liu, Z.; Zhang, C.; Liu, H.; Feng, L. Efficient synergism of NiSe2 na-noparticle/NiO nanosheet for energy-relevant water and urea electrocatalysis. Appl. Catal. B Environ. 2020, 276, 119165.

    5. [5]

      Dong, B.; Xie, J. Y.; Wang, N.; Gao, W. K.; Ma, Y.; Chen, T. S.; Yan, X. T.; Li, Q. Z.; Zhou, Y. L.; Chai, Y. M. Zinc ion induced three-dimensional Co9S8 nano-neuron network for efficient hydrogen evolution. Renew. Energy 2020, 157, 415-423.  doi: 10.1016/j.renene.2020.05.057

    6. [6]

      Niu, C.; Zhang, Y.; Dong, J.; Yuan, R.; Kou, W.; Xu, L. 3D ordered macro-/mesoporous NixCo100-x alloys as high-performance bifunctional electrocatalysts for overall water splitting. Chin. Chem. Lett. 2021, 32, 2484-2488.  doi: 10.1016/j.cclet.2020.12.045

    7. [7]

      Yang, Y.; Yu, Y.; Li, J.; Chen, Q.; Du, Y.; Rao, P.; Li, R.; Jia, C.; Kang, Z.; Deng, P.; Shen, Y.; Tian, X. Engineering ruthenium-based electrocata-lysts for effective hydrogen evolution reaction. Nano-Micro Lett. 2021, 13, 160.  doi: 10.1007/s40820-021-00679-3

    8. [8]

      Li, X. P.; Huang, C.; Han, W. K.; Ouyang, T.; Liu, Z. Q. Transition metal-based electrocatalysts for overall water splitting. Chin. Chem. Lett. 2021, 32, 2597-2616.

    9. [9]

      Liang, Z.; Yang, C.; Zhang, W.; Zheng, H.; Cao, R. Anion engineering of hierarchical Co-A (A = O, Se, P) hexagrams for efficient electrocatalytic oxygen evolution reaction. Chin. Chem. Lett. 2021, 32, 3241-3244.  doi: 10.1016/j.cclet.2021.04.051

    10. [10]

      Wang, Y.; Huang, J.; Wang, L.; She, H.; Wang, Q. Research progress of ferrite materials for photoelectrochemical water splitting. Chin. J. Struct. Chem. 2022, 41, 2201054-2201068.

    11. [11]

      Yao, Y. H.; Zhang, Z. Y.; Jiao, L. F. Development strategies in transition metal borides for electrochemical water splitting. Energy Environ. Mater. 2022, 5, 470-485.

    12. [12]

      Guo, F.; Wu, Y.; Chen, H.; Liu, Y.; Yang, L.; Ai, X.; Zou, X. High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces. Energy Environ. Sci. 2019, 12, 684-692.  doi: 10.1039/C8EE03405B

    13. [13]

      Gao, S.; Chen, H.; Liu, Y.; Gao, R.; Li, G. D.; Zou, X. Surface-clean, phase-pure multi-metallic carbides for efficient electrocatalytic hydrogen evolution reaction. Inorg. Chem. Front. 2019, 6, 940-947.  doi: 10.1039/C8QI01360H

    14. [14]

      Li, P.; Hong, W.; Liu, W. Fabrication of large scale self-supported WC/Ni(OH)2 electrode for high-current-density hydrogen evolution. Chin. J. Struct. Chem. 2021, 40, 1365-1371.

    15. [15]

      Fan, R. Y.; Xie, J. Y.; Liu, H. J.; Wang, H. Y.; Li, M. X.; Yu, N.; Luan, R. N.; Chai, Y. M.; Dong, B. Directional regulating dynamic equilibrium to continuously update electrocatalytic interface for oxygen evolution reaction. Chem. Eng. J. 2022, 431, 134040.

    16. [16]

      Wang, Y.; Chen, S.; Zhao, S.; Chen, Q.; Zhang, J. Interfacial coordination assembly of tannic acid with metal ions on three-dimensional nickel hydroxide nanowalls for efficient water splitting. J. Mater. Chem. A 2020, 8, 15845-15852.

    17. [17]

      Fu, C.; Wang, Y.; Huang, J. Hybrid of quaternary layered double hydroxides and carbon nanotubes for oxygen evolution reaction. Chin. J. Struct. Chem. 2020, 39, 1807-1816.

    18. [18]

      Xie, J. Y.; Fan, R. Y.; Fu, J. Y.; Zhou, Y. N.; Li, M. X.; Liu, H. J.; Ma, Y.; Wang, F. L.; Chai, Y. M.; Dong, B. Double doping of V and F on Co3O4 nano-needles as efficient electrocatalyst for oxygen evolution. Inter. J. Hydrogen Energy 2021, 46, 19962-19970.

    19. [19]

      Du, J.; Li, F.; Sun, C. L. Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chem. Soc. Rev. 2021, 50, 2663-2695.

    20. [20]

      Wang, Y.; Ma, J.; Wang, J.; Chen, S.; Wang, H.; Zhang, J. Interfacial scaffolding preparation of hierarchical PBA-based derivative electrocatalysts for efficient water splitting. Adv. Energy Mater. 2019, 9, 1802939.

    21. [21]

      Fan, R. Y.; Zhou, Y. N.; Li, M. X.; Xie, J. Y.; Yu, W. L.; Chi, J. Q.; Wang, L.; Yu, J. F.; Chai, Y. M.; Dong, B. In situ construction of Fe(Co)OOH through ultra-fast electrochemical activation as real catalytic species for enhanced water oxidation. Chem. Eng. J. 2021, 426, 131943.

    22. [22]

      Zhou, Y. N.; Wang, F. L.; Dou, S. Y.; Shi, Z. N.; Dong, B.; Yu, W. L.; Zhao, H. Y.; Wang, F. G.; Yu, J. F.; Chai, Y. M. Motivating high-valence Nb doping by fast molten salt method for NiFe hydroxides toward efficient oxygen evolution reaction. Chem. Eng. J. 2022, 427, 131643.

    23. [23]

      Wei, C.; Sun, Y.; Scherer, G. G.; Fisher, A. C.; Scherburne, M.; Ager, J. W.; Xu, Z. J. Surface composition dependent ligand effect in tuning the activity of nickel-copper bimetallic electrocatalysts toward hydrogen evolution in alkaline. J. Am. Chem. Soc. 2020, 142, 7765-7775.

    24. [24]

      Zhang, P.; Lu, X. F.; Nai, J. W.; Zang, S. Q.; Lou, X. W. Construction of hierarchical Co-Fe oxyphosphide microtubes for electrocatalytic overall water splitting. Adv. Sci. 2019, 6, 1900576.

    25. [25]

      McCrum, I. T.; Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 2020, 5, 891-899.

    26. [26]

      Zheng, M.; Guo, K.; Jiang, W. J.; Tang, T.; Wang, X.; Zhou, P.; Du, J.; Zhao, Y.; Xu, C.; Hu, J. S. When MoS2 meets FeOOH: a "one-stone-two-birds'' heterostructure as a bifunctional electrocatalyst for efficient alkaline water splitting. Appl. Catal. B Environ. 2019, 244, 1004-1012.

    27. [27]

      Lv, C. C.; Wang, X. B.; Gao, L. J.; Wang, A. J.; Wang, S. F.; Wang, R. N.; Ning, X. K.; Li, Y. G.; Boukhvalov, D. W.; Huang, Z. P.; Zhang, C. Triple functions of Ni(OH)2 on the surface of WN nanowires remarkably promoting electrocatalytic activity in full water splitting. ACS Catal. 2020, 10, 13323-13333.

    28. [28]

      Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256-1260.

    29. [29]

      Xu, Q. C.; Jiang, H.; Zhang, H. X.; Hu, Y. J.; Li, C. Z. Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting. Appl. Catal. B Environ. 2019, 242, 60-66.

    30. [30]

      Wei, Y.; Zhang, X.; Wang, Z.; Yin, J.; Huang, J.; Zhao, G.; Xu, X. Metal-organic framework derived NiCoP hollow polyhedrons electrocatalyst for pH-universal hydrogen evolution reaction. Chin. Chem. Lett. 2021, 32, 119-124.

    31. [31]

      Zheng, Y.; Jiao, Y.; Zhu, Y.; Li, L. H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S. -Z. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 2016, 138, 16174-16181.

    32. [32]

      Ma, Q. Y.; Hu, C. Y.; Liu, K. L.; Hung, S. -F.; Ou, D. H.; Chen, H. M.; Fu, G.; Zheng, N. F. Identifying the electrocatalytic sites of nickel disulfide in alkaline hydrogen evolution reaction. Nano Energy 2017, 41, 148-153.

    33. [33]

      Kuang, P. Y.; He, M.; Zou, H. Y.; Yu, J. G. 0D/3D MoS2-NiS2/N-doped graphene foam composite for efficient overall water splitting. Appl. Catal. B: Environ. 2019, 254, 15-25.

    34. [34]

      Kuang, P. Y.; Wang, Y. R.; Zhu, B. C.; Xia, F. J.; Tung, C. W.; Wu, J. S.; Chen, H. M. Pt Single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H2-evolution activity. Adv. Mater. 2021, 33, 2008599.

    35. [35]

      Chang, K.; Chen, W. X. l-Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano. 2011, 5, 4720.

    36. [36]

      Zeng, L. Y.; Sun, K.; Chen, Y. J.; Liu, Z.; Chen, Y. J.; Pan, Y.; Zhao, R. Y.; Liu, Y. Q.; Liu, C. G. Neutral-pH overall water splitting catalyzed efficiently by a hollow and porous structured ternary nickel sulfoselenide electrocatalyst. J. Mater. Chem. A 2019, 7, 16793.

    37. [37]

      Peng, S.; Li, L.; Tan, H.; Cai, R.; Shi, W.; Li, C.; Mhaisalkar, S. G.; Srinivasan, M.; Ramakrishna, S.; Yan, Q. MS2 (M = Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics. Adv. Funct. Mater. 2014, 24, 2155-2162.

    38. [38]

      Guo, Z.; Wang, X. Atomic layer deposition of the metal pyrites FeS2, CoS2, and NiS2. Angew. Chem. Int. Ed. 2018, 57, 5898-5902.

    39. [39]

      Zhu, Y.; Chen, G.; Zhong, Y.; Zhou, W.; Shao, Z. Rationally designed hierarchically structured tungsten nitride and nitrogen-rich graphene-like carbon nanocomposite as efficient hydrogen evolution electrocatalyst. Adv. Sci. 2018, 5, 1700603.

    40. [40]

      Fu, Z. W.; Hu, J. T.; Hu, W. L.; Yang, S. Y.; Luo, Y. F. Quantitative analysis of Ni2+/Ni3+ in Li(NixMnyCoz)O2 cathode materials: non-linear least-squares fitting of XPS spectra. Appl. Surf. Sci. 2018, 441, 1048-1056.

    41. [41]

      Gao, M. R.; Liang, J. X.; Zheng, Y. R.; Xu, Y. F.; Jiang, J.; Gao, Q.; Li, J.; Yu, S. H. An efficient molybdenum disulfide/cobalt diselenide hybrid ca-talyst for electrochemical hydrogen generation. Nat. Commun. 2015, 6, 5982.

    42. [42]

      Ou, G.; Xu, Y. S.; Wen, B.; Lin, R.; Ge, B. G.; Tang, Y.; Liang, Y. W.; Yang, C.; Huang, K.; Zu, D.; Yu, R.; Chen, W. X.; Li, J.; Wu, H.; Liu, L. M.; Li, Y. D. Tuning defects in oxides at room temperature by lithium reduction. Nat. Commun. 2018, 9, 1302.

    43. [43]

      Hu, W. B.; Liu, Y.; Withers, R. L.; Frankcombe, T. J.; Norén, L.; Snashall, A.; Kitchin, M.; Smith, P.; Gong, B.; Chen, H.; Schiemer, J.; Brink, F.; Jennifer, W. L. Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 2013, 12, 821-826.

    44. [44]

      Xiao, Z. H.; Huang, Y. C.; Dong, C. L.; Xie, C.; Liu, Z. J.; Du, S. Q.; Chen, W.; Yan, D. F.; Tao, L.; Shu, Z. W.; Zhang, G. H.; Duan, H. G.; Wang, Y. Y.; Zou, Y. Q.; Chen, R.; Wang, S. Y. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 12087-12095.

    45. [45]

      Zhu, Y. M.; Zhang, L.; Zhao, B.; Chen, H. J.; Liu, X.; Zhao, R.; Wang, X. W.; Liu, J.; Chen, Y.; Liu, M. L. Improving the activity for oxygen evolution reaction by tailoring oxygen defects in double perovskite oxides. Adv. Funct. Mater. 2019, 29, 1901783.

    46. [46]

      Zeng, Y.; Cao, Z.; Liao, J.; Liang, H.; Wei, B.; Xu, X.; Xu, H.; Zheng, J.; Zhu, W.; Cavallo, L.; Wang, Z. Construction of hydroxide PN junction for water splitting electrocatalysis. Appl. Catal. B: Environ. 2021, 292, 120160.

    47. [47]

      Yuan, M. L.; Chen, J. W.; Bai, Y. L.; Liu, Z. J.; Zhang, J. X.; Zhao, T. K.; Shi, Q. N.; Li, S. W.; Wang, X.; Zhang, G. J. Electrochemical C-N coupling with perovskite hybrids toward efficient urea synthesis. Chem. Sci. 2021, 12, 6048-6058.

    48. [48]

      Liu, Y. P.; Liang, X.; Gu, L.; Zhang, Y.; Li, G. D.; Zou, X. X.; Chen, J. S. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nat. Commun. 2018, 9, 2609.

    49. [49]

      Kim, D.; Park, J.; Lee, J.; Zhang, Z.; Yong, K. Ni(OH)2-WP hybrid nanorod arrays for highly efficient and durable hydrogen evolution reactions in alkaline media. ChemSusChem. 2018, 11, 3618-3624.

  • 加载中
    1. [1]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    2. [2]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    3. [3]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    9. [9]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    10. [10]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    11. [11]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    12. [12]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    13. [13]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    14. [14]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    15. [15]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    16. [16]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    17. [17]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    18. [18]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    19. [19]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    20. [20]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

Metrics
  • PDF Downloads(3)
  • Abstract views(227)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return