Citation: Yan Yang, Shuting Xu, Yanli Gai, Bo Zhang, Lian Chen. Recent Progresses in Lanthanide Metal-Organic Frameworks (Ln-MOFs) as Chemical Sensors for Ions, Antibiotics and Amino Acids[J]. Chinese Journal of Structural Chemistry, ;2022, 41(11): 221104. doi: 10.14102/j.cnki.0254-5861.2022-0138 shu

Recent Progresses in Lanthanide Metal-Organic Frameworks (Ln-MOFs) as Chemical Sensors for Ions, Antibiotics and Amino Acids






  • Author Bio: Yan Yang received her Ph.D. degree in 2017 from Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, under the supervision of Prof. Maochun Hong. Subsequently, she started her teaching career at College of Chemistry and Chemical Engineering, Liaocheng University. Her research interests focus on the synthesis and practical applications of lanthanide metal-organic frameworks for chemical sensors
    Shuting Xu received her B.Sc. degree from Liaocheng University in 2022. In the same year, she was admitted to the School of Chemistry and Chemical Engineering of Liaocheng University to pursue a M.Sc. degree under the supervision of Ph.D Yan Yang. Her research mainly focuses on the synthesis of lanthanide metal-organic frameworks and their applications for chemical sensors
    Yanli Gai received her Ph.D. degree from Fujian Institute Research on the Structural Chemistry, Chinese Academy of Sciences in 2014 under the supervision of Prof. Feilong Jiang and Prof. Maochun Hong. She joined the faculty at Jiangsu Normal University in 2015, and was promoted to Associate Professor in 2019. She worked as a visiting scholar in University of California at Riverside in 2017-2018. Her current research interests focus on metal-organic coordination polymers for chemical sensors, photo/chemochromism, and solid adsorbents for gas adsorption and separation
    Bo Zhang was born in Shandong, P. R. China. He received his Ph.D. degree in physical chemistry from Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, in 2017 under the supervision of Prof. Xiaoying Huang. In the same year, he joined the faculty at College of Chemistry and Chemical Engineering, Liaocheng University. His research interests focus on the design of energy and environment-related functional materials
    Lian Chen graduated from Fudan University and received the B. Sc in 2002. From 2002 to 2007, she studied in Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), and received her Ph.D. degree in 2007 under the supervision of Prof. Maochun Hong. Then, she joined the faculty at FJIRSM, CAS and was promoted to full research professor in 2018. Her research interests focus on the synthesis and property studies of organic-inorganic hybrid luminescent materials
  • Corresponding author: Yan Yang, yangyan@lcu.edu.cn Lian Chen, cl@fjirsm.ac.cn
  • Received Date: 26 May 2022
    Accepted Date: 29 June 2022
    Available Online: 5 July 2022

Figures(18)

  • Various ions and antibiotics, widely used in industry and clinical medicine, respectively, are massively discharged to atmosphere and water, resulting in severe pollutions on environment and potential threats to human health. Besides, amino acids, the primary substances for the establishment of proteins, cells and tissues, are crucial to human health. Therefore, seeking effective and practicable materials to detect aforesaid analytes is vitally meaningful. Metal-organic frameworks centered with lanthanide ions (Ln-MOFs), also known as lanthanide coordination polymers, are considered as a charming category of multi-functional hybrid crystalline materials with fascinating structures and incomparable luminescent characteristics. Benefited from their unique merits, Ln-MOFs have been largely developed as excellent luminescent sensors for fast and efficient sensing various analytes. In this review, we aim to introduce some of the recent researches between 2018 to 2022 on Ln-MOFs applied as chemical sensors for ions, antibiotics and amino acids based on luminescent quenching and enhancing effects, and provide an update and summary for the latest progresses in this field.
  • 加载中
    1. [1]

      Yuan, H. Y.; Li, N. X.; Fan, W. D.; Cai, H.; Zhao, D. Metal-organic framework based gas sensors. Adv. Sci. 2022, 9, 2104374.  doi: 10.1002/advs.202104374

    2. [2]

      Pal, S.; Yu, S. S.; Kung, C. W. Group 4 metal-based metal-organic frameworks for chemical sensors. Chemosensors 2021, 9, 306.  doi: 10.3390/chemosensors9110306

    3. [3]

      Morozova, S. M.; Sharsheeva, A.; Morozov, M. I.; Vinogradov, A. V.; Hey-Hawkins, E. Bioresponsive metal-organic frameworks: rational design and function. Coord. Chem. Rev. 2021, 431, 213682.  doi: 10.1016/j.ccr.2020.213682

    4. [4]

      Jin, J.; Xue, J. J.; Liu, Y. C.; Yang, G. P.; Wang, Y. Y. Recent progresses in luminescent metal-organic frameworks (LMOFs) as sensors for the detection of anions and cations in aqueous solution. Dalton Trans. 2021, 50, 1950-1972.  doi: 10.1039/D0DT03930F

    5. [5]

      Zhang, Y. M.; Yuan, S.; Day, G.; Wang, X.; Yang, X. Y.; Zhou, H. C. Luminescent sensors based on metal-organic frameworks. Coord. Chem. Rev. 2018, 354, 28-45.  doi: 10.1016/j.ccr.2017.06.007

    6. [6]

      Razavi, S. A. A.; Morsali, A. Metal ion detection using luminescent-MOFs: principles, strategies and roadmap. Coord. Chem. Rev. 2020, 415, 213299.  doi: 10.1016/j.ccr.2020.213299

    7. [7]

      Ghasempour, H.; Wang, K. Y.; Powell, J. A.; ZareKarizi, F.; Lv, X. L.; Morsali, A.; Zhou, H. C. Metal-organic frameworks based on multicarboxylate linkers. Coord. Chem. Rev. 2021, 426, 213542.  doi: 10.1016/j.ccr.2020.213542

    8. [8]

      Shu, Y.; Ye, Q.; Dai, T.; Xu, Q.; Hu, X. Encapsulation of luminescent guests to construct luminescent metal-organic frameworks for chemical sensing. ACS Sensors 2021, 6, 641-658.  doi: 10.1021/acssensors.0c02562

    9. [9]

      Liu, J. Q.; Luo, Z. D.; Pan, Y.; Kumar Singh, A.; Trivedi, M.; Kumar, A. Recent developments in luminescent coordination polymers: designing strategies, sensing application and theoretical evidences. Coord. Chem. Rev. 2020, 406, 213145.  doi: 10.1016/j.ccr.2019.213145

    10. [10]

      Wang, Y. L.; Li, X. Y.; Han, S. D.; Pan, J.; Xue, Z. Z. A Cu2I2-based coordination framework as the selective sensor for Ag+ and the effective adsorbent for I2. Cryst. Growth Des. 2022, 10.1021/acs. cgd. 2c00080.  doi: 10.1021/acs.cgd.2c00080

    11. [11]

      Xiong, K. C.; Li, X.; Shi, Y. W.; Zhang, J. L.; Zhang, Y.; Zhang, K. H.; Wu, M. Y.; Gai, Y. L. Sodalite Cd66-cage-based metal-organic framework constructed by Cd9 and Cd5 metal-organic clusters. Inorg. Chem. 2021, 60, 17435-17439.  doi: 10.1021/acs.inorgchem.1c02765

    12. [12]

      Pang, J. D.; Di, Z. Y.; Qin, J. S.; Yuan, S.; Lollar, T. C.; Li, J. L.; Zhang, P.; Wu, M. Y.; Yuan, D. Q.; Hong, M. C.; Zhou, H. C. Precisely embedding active sites into a mesoporous Zr-framework through linker installation for high-efficiency photocatalysis. J. Am. Chem. Soc. 2020, 142, 15020-15026.  doi: 10.1021/jacs.0c05758

    13. [13]

      Zhu, S. Y.; Zhao, L. M.; Yan. B. A novel spectroscopic probe for detecting food preservative NO2-: citric acid functionalized metal-organic framework and luminescence sensing. Microchem. J. 2020, 155, 104768.  doi: 10.1016/j.microc.2020.104768

    14. [14]

      Li, Y. W.; Li, J.; Wan, X. Y.; Sheng, D. F.; Yan, H.; Zhang, S. S.; Ma, H. Y.; Wang, S. N.; Li, D. C.; Gao, Z. Y.; Dou, J. M.; Sun, D. Nanocage-based N-rich metal-organic framework for luminescence sensing toward Fe3+ and Cu2+ Ions. Inorg. Chem. 2021, 60, 671-681.  doi: 10.1021/acs.inorgchem.0c02629

    15. [15]

      Xian, G. X.; Wang, L. Y.; Wan, X. Y.; Yan, H.; Cheng, J. W.; Chen, Y. Q.; Lu, J.; Li, Y. W.; Li, D. C.; Dou, J. M.; Wang, S. N. Two multiresponsive luminescent Zn-MOFs for the detection of different chemicals in simulated urine and antibiotics/cations/anions in aqueous media. Inorg. Chem. 2022, 61, 7238-7250.  doi: 10.1021/acs.inorgchem.1c03502

    16. [16]

      Sun, T. Y.; Gao, Y. B.; Du, Y. Y.; Zhou, L.; Chen, X. Recent advances in developing lanthanide metal-organic frameworks for ratiometric fluorescent sensing. Front. Chem. 2020, 8, 624592.

    17. [17]

      Younis, S. A.; Bhardwaj, N.; Bhardwaj, S. K.; Kim, K. H.; Deep, A. Rare earth metal-organic frameworks (RE-MOFs): synthesis, properties, and biomedical applications. Coord. Chem. Rev. 2021, 429, 213620.  doi: 10.1016/j.ccr.2020.213620

    18. [18]

      Belousov, Y. A.; Drozdov, A. A.; Taydakov, I. V.; Marchetti, F.; Pettinari, R.; Pettinari, C. Lanthanide azolecarboxylate compounds: structure, luminescent properties and applications. Coord. Chem. Rev. 2021, 445, 214084.  doi: 10.1016/j.ccr.2021.214084

    19. [19]

      Chen, X.; Xu, Y.; Li, H. R. Lanthanide organic/inorganic hybrid systems: efficient sensors for fluorescence detection. Dyes Pigm. 2020, 178, 108386.  doi: 10.1016/j.dyepig.2020.108386

    20. [20]

      Armelao, L.; Quici, S.; Barigelletti, F.; Accorsi, G.; Bottaro, G.; Cavazzini, M.; Tondello, E. Design of luminescent lanthanide complexes: from molecules to highly efficient photo-emitting materials. Coord. Chem. Rev. 2010, 254, 487-505.  doi: 10.1016/j.ccr.2009.07.025

    21. [21]

      Li, B.; Wen, H. M.; Cui, Y. J.; Qian, G. D.; Chen, B. L. Multifunctional lanthanide coordination polymers. Prog. Polym. Sci. 2015, 48, 40-84.  doi: 10.1016/j.progpolymsci.2015.04.008

    22. [22]

      Yi, F. Y.; Chen, D. X.; Wu, M. K.; Han, L.; Jiang, H. L. Chemical sensors based on metal organic frameworks. ChemPlusChem 2016, 81, 675-690.  doi: 10.1002/cplu.201600137

    23. [23]

      Fan, T. N.; Xia, T. F.; Zhang, Q.; Cui, Y. J.; Yang, Y.; Qian, G. D. A porous and luminescent metal-organic framework containing triazine group for sensing and imaging of Zn2+. Micropor. Mesopor. Mat. 2018, 266, 1-6.  doi: 10.1016/j.micromeso.2018.02.050

    24. [24]

      Wu, C. M.; Feng, Z. H.; Zhou, H. Q.; Yu, F. Y.; Li, J. R.; Ye, X. H.; Hu, J. Y.; Chung, L. H.; Liao, W. M.; He, J. Metal-organic frameworks constructed from trivalent lanthanide nodes (Eu3+, Tb3+, and Dy3+) and thiophenethio-functionalized linker with photoluminescent response selective towards Ag+ ions. Dyes Pigm. 2022, 198, 109999.  doi: 10.1016/j.dyepig.2021.109999

    25. [25]

      Yang, Y.; Jiang, F. L.; Chen, L.; Pang, J. D.; Wu, M. Y.; Wan, X. Y.; Pan, J.; Qian, J. J.; Hong, M. C. An unusual bifunctional Tb-MOF for highly sensitive sensing of Ba2+ ions and with remarkable selectivities for CO2-N2 and CO2-CH4. J. Mater. Chem. A 2015, 3, 13526-13532.  doi: 10.1039/C5TA00720H

    26. [26]

      Wu, N.; Guo, H.; Wang, X. Q.; Sun, L.; Zhang, T. T.; Peng, L. P.; Yang, W. A water-stable lanthanide-MOF as a highly sensitive and selective luminescence sensor for detection of Fe3+ and benzaldehyde. Colloids Surf. A: Physicochem. Eng. Aspects 2021, 616, 126093.  doi: 10.1016/j.colsurfa.2020.126093

    27. [27]

      Jia, P.; Wang, Z. H.; Zhang, Y. F.; Zhang, D.; Gao, W. C.; Su, Y.; Li, Y. B.; Yang, C. L. Selective sensing of Fe3+ ions in aqueous solution by a biodegradable platform based lanthanide metal organic framework. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2020, 230, 118084.  doi: 10.1016/j.saa.2020.118084

    28. [28]

      Xiao, X. F.; Ren, L. P.; Wang, S. J.; Zhang, Q.; Zhang, Y. W.; Liu, R. N.; Xu, W. L. Controllable production of micro-nanoscale metal-organic frameworks coatings on cotton fabric for sensing Cu2+. Fiber. Polym. 2020, 21, 2003-2009.  doi: 10.1007/s12221-020-9836-5

    29. [29]

      Wang, W. B.; Wang, R. Y.; Ge, Y. F.; Wu, B. L. Color tuning and white light emission by codoping in isostructural homochiral lanthanidmetal-organic frameworks. RSC Adv. 2018, 8, 42100-42108.  doi: 10.1039/C8RA06793G

    30. [30]

      Li, J. X.; Guan, Q. L.; You, Z. X.; Wang, Y.; Shi, Z.; Xing, Y. H.; Bai, F. Y.; Sun, L. X. Achieving multifunctional detection of Th4+ and UO22+ in the post-synthetically modified metal-organic framework and application of functional MOF membrane. Adv. Mater. Technol. 2021, 6, 2001184.  doi: 10.1002/admt.202001184

    31. [31]

      Song, X. Q.; Meng, H. H.; Lin, Z. G.; Wang, L. 2D lanthanide coordination polymers: synthesis, structure, luminescent properties, and ratiometric sensing application in the hydrostable PMMA-doped hybrid films. ACS Appl. Polym. Mater. 2020, 2, 1644-1655.  doi: 10.1021/acsapm.0c00052

    32. [32]

      Chen, X. L.; Shang, L.; Liu, L.; Yang, H.; Cui, H. L.; Wang, J. J. A highly sensitive and multi-responsive Tb-MOF fluorescent sensor for the detection of Pb2+, Cr2O72-, B4O72-, aniline, nitrobenzene and cefixime. Dyes Pigm. 2021, 196, 109809.  doi: 10.1016/j.dyepig.2021.109809

    33. [33]

      Mandal, T. N.; Karmakar, A.; Sharma, S.; Ghosh, S. K. Metal-organic frameworks (MOFs) as functional supramolecular architectures for anion recognition and sensing. Chem. Rec. 2018, 18, 154-164.  doi: 10.1002/tcr.201700033

    34. [34]

      Guo, H.; Wu, N.; Xue, R.; Liu, H.; Wang, M. Y.; Yao, W. Q.; Wang, X. Q.; Yang, W. An Eu(Ⅲ)-functionalized Sr-based metal-organic framework for fluorometric determination of Cr(Ⅲ) and Cr(Ⅵ) ions. Microchimica Acta 2020, 187, 374.  doi: 10.1007/s00604-020-04292-w

    35. [35]

      Zhang, P. F.; Yang, G. P.; Li, G. P.; Yang, F.; Liu, W. N.; Li, J. Y.; Wang, Y. Y. Series of water-stable lanthanide metal-organic frameworks based on carboxylic acid imidazolium chloride: tunable luminescent emission and sensing. Inorg. Chem. 2019, 58, 13969-13978.  doi: 10.1021/acs.inorgchem.9b01954

    36. [36]

      Tan, G.; Jia, R. Q.; Wu, W. L.; Li, B.; Wang, L. Y. Highly pH-stable Ln-MOFs as sensitive and recyclable multifunctional materials: luminescent probe, tunable luminescent, and photocatalytic performance. Cryst. Growth Des. 2021, 22, 323-333.

    37. [37]

      Das, A.; Das, S.; Trivedi, V.; Biswas, S. A dual functional MOF-based fluorescent sensor for intracellular phosphate and extracellular 4-nitro-benzaldehyde. Dalton Trans. 2019, 48, 1332-1343.  doi: 10.1039/C8DT03964J

    38. [38]

      Wang, J. Y.; Li, W. Y.; Zheng, Y. Q. Colorimetric assay for the sensitive detection of phosphate in water based on metal-organic framework nanospheres possessing catalytic activity. New J. Chem. 2020, 44, 19683-19689.  doi: 10.1039/D0NJ04164E

    39. [39]

      Yin, J.; Chu, H. T.; Qin, S. L.; Qi, H. Y.; Hu, M. G. Preparation of Eu0.075Tb0.925-metal organic framework as a fluorescent probe and application in the detection of Fe3+ and Cr2O72-. Sensors 2021, 21, 7355.  doi: 10.3390/s21217355

    40. [40]

      Zhang, G. S.; Wu, G. H.; Zhang, H.; Wang, G. N.; Han, H. T. A stable terbium(Ⅲ) metal-organic framework as a dual luminescent sensor for MnO4- ions and nitroaromatic explosives. J. Solid State Chem. 2021, 295, 121924.  doi: 10.1016/j.jssc.2020.121924

    41. [41]

      Gao, W.; Zhou, A. M.; Wei, H.; Wang, C. L.; Liu, J. P.; Zhang, X. M. Water-stable Ln-based coordination polymers displaying slow magnetic relaxation and luminescence sensing properties. New J. Chem. 2020, 44, 6747-6759.  doi: 10.1039/D0NJ00828A

    42. [42]

      Yin, S. Y.; Fu, P. Y.; Pan, M.; Guo, J.; Fan, Y. N.; Su, C. Y. Reverse photoluminescence responses of Ln(Ⅲ) complexes to methanol vapor clarify the differentiated energy transfer pathway and potential for methanol detection and encryption. J. Mater. Chem. C 2020, 8, 16907-16914.  doi: 10.1039/D0TC04413J

    43. [43]

      Ren, J. Y.; Niu, Z.; Ye, Y. X.; Tsai, C. Y.; Liu, S. X.; Liu, Q. Z.; Huang, X. Q.; Zafady, A.; Ma, S. Q. Second-sphere interaction promoted turn-on fluorescence for selective sensing of organic amines in a Tb-based macrocyclic framework. Angew. Chem. Int. Ed. 2021, 60, 23705-23712.  doi: 10.1002/anie.202107436

    44. [44]

      Feng, L.; Dong, C. L.; Li, M. F.; Li, L. X.; Jiang, X.; Gao, R.; Wang, R. J.; Zhang, L. J.; Ning, Z. L.; Gao, D. J.; Bi, J. Terbium-based metal-organic frameworks: highly selective and fast respond sensor for styrene detection and construction of molecular logic gate. J. Hazard. Mater. 2020, 388, 121816.  doi: 10.1016/j.jhazmat.2019.121816

    45. [45]

      Yang, Y.; Li, L. Z.; Yang, H.; Sun, L. Five lanthanide-based metalorganic frameworks built from a π-conjugated ligand with isophthalate units featuring sensitive fluorescent sensing for DMF and acetone molecules. Cryst. Growth Des. 2021, 21, 2954-2961.  doi: 10.1021/acs.cgd.1c00116

    46. [46]

      Wang, C. L.; Zheng, Y. X.; Chen, L.; Zhu, C. Y.; Gao, W.; Li, P.; Liu, J. P.; Zhang, X. M. The construction of a multifunctional luminescent Eu-MOF for the sensing of Fe3+, Cr2O72- and amines in aqueous solution. CrystEngComm 2021, 23, 7581-7589.  doi: 10.1039/D1CE01192H

    47. [47]

      Wang, H. F.; Ma, X. F.; Zhu, Z. H.; Zou, H. H.; Liang, F. P. Regulation of the metal center and coordinating anion of mononuclear Ln(Ⅲ) complexes to promote an efficient luminescence response to various organic solvents. Langmuir 2020, 36, 1409-1417.  doi: 10.1021/acs.langmuir.9b02990

    48. [48]

      Wang, H. F.; Zhu, Z. H.; Peng, J. M.; Yin, B.; Wang, H. L.; Zou, H. H.; Liang, F. P. Multifunctional binuclear Ln(Ⅲ) complexes obtained via in situ tandem reactions: multiple photoresponses to volatile organic solvents and anticounterfeiting and magnetic properties. Inorg. Chem. 2020, 59, 13774-13783.  doi: 10.1021/acs.inorgchem.0c02193

    49. [49]

      Zeng, X. L.; Long, Z.; Jiang, X. F.; Zhang, Y. J.; Liu, Q.; Hu, J.; Li, C. H.; Wu, L.; Hou, X. D. Single bimetallic lanthanide-based metal-organic frameworks for visual decoding of a broad spectrum of molecules. Anal. Chem. 2020, 92, 5500-5508.  doi: 10.1021/acs.analchem.0c00324

    50. [50]

      Guo, H. D.; Wang, F. Y.; Ma, R. D.; Zhang, M.; Fu, L. S.; Zhou, T.; Liu, S.; Guo, X. M. Lanthanide post-functionalized UiO-67 type metal-organic frameworks for tunable light-emission and stable multi-sensors in aqueous media. Inorg. Chim. Acta 2021, 518, 120229.  doi: 10.1016/j.ica.2020.120229

    51. [51]

      Zhan, C. H.; Huang, D. P.; Wang, Y.; Mao, W. T.; Wang, X. J.; Jiang, Z. G.; Feng, Y. L. Four anionic Ln-MOFs for remarkable separation of C2H2-CH4/CO2-CH4 and highly sensitive sensing of nitrobenzene. CrystEngComm 2021, 23, 2788-2792.  doi: 10.1039/D1CE00235J

    52. [52]

      Ma, L. L.; Yang, G. P.; Li, G. P.; Zhang, P. F.; Jin, J.; Wang, Y.; Wang, J. M.; Wang, Y. Y. Luminescence modulation, near white light emission, selective luminescence sensing, and anticounterfeiting via a series of Ln-MOFs with a π-conjugated and uncoordinated Lewis basic triazolyl ligand. Inorg. Chem. Front. 2021, 8, 329-338.  doi: 10.1039/D0QI01100B

    53. [53]

      Liu, W. S.; Li, D. P.; Wang, F.; Chen, X. Y.; Wang, X. Q.; Tian, Y. A luminescent lanthanide MOF as highly selective and sensitive fluorescent probe for nitrobenzene and Fe3+. Opt. Mater. 2022, 123, 111895.  doi: 10.1016/j.optmat.2021.111895

    54. [54]

      Wang, M.; Gao, H. W.; Li, J. X.; Bai, F. Y.; Xing, Y. H.; Shi, Z. Multifuntional luminescence sensing and white light adjustment of lanthanide metal-organic frameworks constructed from the flexible cyclotriphosphazene-derived hexacarboxylic acid ligand. Dalton Trans. 2021, 50, 14618-14628.  doi: 10.1039/D1DT02560K

    55. [55]

      Lin, Z. G.; Song, F. Q.; Wang, H.; Song, X. Q.; Yu, X. X.; Liu, W. S. The construction of a novel luminescent lanthanide framework for the selective sensing of Cu2+ and 4-nitrophenol in water. Dalton Trans. 2021, 50, 1874-1886.  doi: 10.1039/D0DT04089D

    56. [56]

      Zhou, T.; Liu, S.; Wang, S.; Mi, S. Y.; Gao, P.; Guo, X. M.; Su, Q. J.; Guo, H. D. Dual-function lanthanide-organic frameworks based on a zwitterionic ligand as a ratiometric thermometer and a selective sensor for nitroaromatic explosives. Ind. Eng. Chem. Res. 2021, 60, 11760-11767.  doi: 10.1021/acs.iecr.1c01963

    57. [57]

      Wang, J. M.; Zhang, P. F.; Cheng, J. G.; Wang, Y.; Ma, L. L.; Yang, G. P.; Wang, Y. Y. Luminescence tuning and sensing properties of stable 2D lanthanide metal-organic frameworks built with symmetrical flexible tricarboxylic acid ligands containing ether oxygen bonds. CrystEngComm 2021, 23, 411-418.  doi: 10.1039/D0CE01528H

    58. [58]

      Wang, Q. Q.; Guo, Z. H.; Zhang, Y. D.; Ma, L. L.; Zhang, P. F.; Yang, G. P.; Wang, Y. Y. White light emission phosphor modulation, nitrobenzene sensing property and barcode anti-counterfeiting via lanthanides post-functionalized metal-organic frameworks. J. Solid State Chem. 2022, 307, 122854.  doi: 10.1016/j.jssc.2021.122854

    59. [59]

      Deng, L. M.; Zhao, H. H.; Liu, K.; Ma, D. X. Efficient luminescence sensing in two lanthanide metal-organic frameworks with rich uncoordinated Lewis basic sites. CrystEngComm 2021, 23, 6591-6598.  doi: 10.1039/D1CE00923K

    60. [60]

      Pan, Y.; Su, H. Q.; Zhou, E. L.; Yin, H. Z.; Shao, K. Z.; Su, Z. M. A stable mixed lanthanide metal-organic framework for highly sensitive thermometry. Dalton Trans. 2019, 48, 3723-3729.  doi: 10.1039/C9DT00217K

    61. [61]

      Gomez, G. E.; Marin, R.; Carneiro Neto, A. N.; Botas, A. M. P.; Ovens, J.; Kitos, A. A.; Bernini, M. C.; Carlos, L. D.; Soler-Illia, G. J. A. A.; Murugesu, M. Tunable energy-transfer process in heterometallic MOF materials based on 2, 6-naphthalenedicarboxylate: solid-state lighting and near-infrared luminescence thermometry. Chem. Mater. 2020, 32, 7458-7468.  doi: 10.1021/acs.chemmater.0c02480

    62. [62]

      Feng, T. T.; Ye, Y. X.; Liu, X.; Cui, H.; Li, Z. Q.; Zhang, Y.; Liang, B.; Li, H. R.; Chen, B. L. A robust mixed-lanthanide polyMOF membrane for ratiometric temperature sensing. Angew. Chem. Int. Ed. 2020, 59, 21752-21757.  doi: 10.1002/anie.202009765

    63. [63]

      Liu, W.; Zhao, M. Y.; Xiang, G. T.; Han, Z. L.; Xia, F.; Wang, J. W. High-efficiency energy transfer pathways between Er(Ⅲ) and Tm(Ⅲ) in metal-organic frameworks for tunable upconversion emission and optical temperature sensing. J. Lumin. 2021, 239, 118296.  doi: 10.1016/j.jlumin.2021.118296

    64. [64]

      McLaurin, E. J.; Bradshaw, L. R.; Gamelin, D. R. Dual-emitting nanoscale temperature sensors. Chem. Mater. 2013, 25, 1283-1292.  doi: 10.1021/cm304034s

    65. [65]

      Yu, W. T.; Chen, H. B.; Wu, H. J.; Lin, P. C.; Xu, H. H.; Xie, Q. W.; Shi, K. Z.; Xie, G. X.; Chen, Y. Continuous-flow rapid synthesis of wavelength-tunable luminescent lanthanide metal-organic framework nanorods by a microfluidic reactor. J. Alloys Compd. 2022, 890, 161860.  doi: 10.1016/j.jallcom.2021.161860

    66. [66]

      Li, Y. P.; Xiao, X. Y.; Wei, Z.; Chen, Y. A ratio fluorescence thermometer based on carbon dots & lanthanide functionalized metal-organic frameworks. Z. Anorg. Allg. Chem. 2022, e202100323.

    67. [67]

      Yuan, R. R.; He, H. M. State of the art methods and challenges of luminescent metal-organic frameworks for antibiotic detection. Inorg. Chem. Front. 2020, 7, 4293-4319.  doi: 10.1039/D0QI00955E

    68. [68]

      Yang, H. W.; Xu, P.; Ding, B.; Liu, Z. Y.; Zhao, X. J.; Yang, E. C. A highly stable luminescent Eu-MOF exhibiting efficient response to nitrofuran antibiotics through the inner filter effect and photoinduced electron transfer. Eur. J. Inorg. Chem. 2019, 2019, 5077-5084.  doi: 10.1002/ejic.201901143

    69. [69]

      Li, J. M.; Huo, R.; Li, X.; Sun, H. L. Lanthanide-organic frameworks constructed from 2, 7-naphthalenedisulfonate and 1H-imidazo[4, 5-f][1, 10]-phenanthroline: synthesis, structure, and luminescence with near-visible light excitation and magnetic properties. Inorg. Chem. 2019, 58, 9855-9865.  doi: 10.1021/acs.inorgchem.9b00925

    70. [70]

      Lei, M. Y.; Wang, X. H.; Zhang, T. J.; Shi, Y.; Wen, J. H.; Zhang, Q. F. Homochiral Eu3+@MOF composite for the enantioselective detection and separation of (R/S)-ornidazole. Inorg. Chem. 2022, 61, 6764-6772.  doi: 10.1021/acs.inorgchem.1c03695

    71. [71]

      Yang, Y.; Zhao, L. N.; Sun, M. A.; Wei, P. P.; Li, G. M.; Li, Y. X. Highly sensitive luminescent detection toward polytypic antibiotics by a water-stable and white-light-emitting MOF-76 derivative. Dyes and Pigments 2020, 180, 108444.  doi: 10.1016/j.dyepig.2020.108444

    72. [72]

      Liu, D. M.; Dong, G. Y.; Wang, X.; Nie, F. M.; Li, X. A luminescent Eu coordination polymer with near-visible excitation for sensing and its homologues constructed from 1, 4-benzenedicarboxylate and 1H-imidazo-[4, 5-f][1, 10]-phenanthroline. CrystEngComm 2020, 22, 7877-7887.  doi: 10.1039/D0CE01256D

    73. [73]

      Sun, T. C.; Fan, R. Q.; Xiao, R.; Xing, T. F.; Qin, M. Y.; Liu, Y. Q.; Hao, S.; Chen, W.; Yang, Y. L. Anionic Ln-MOF with tunable emission. J. Mater. Chem. A 2020, 8, 5587-5594.  doi: 10.1039/C9TA13932J

    74. [74]

      Wang, X. R.; Huang, Z.; Du, J.; Wang, X. Z.; Gu, N.; Tian, X.; Li, Y.; Liu, Y. Y.; Huo, J. Z.; Ding, B. Hydrothermal preparation of five rare-earth (Re = Dy, Gd, Ho, Pr, and Sm) luminescent cluster-based coordination materials: the first MOFs-based ratiometric fluorescent sensor for lysine and bifunctional sensing platform for insulin and Al3+. Inorg. Chem. 2018, 57, 12885-12899.  doi: 10.1021/acs.inorgchem.8b02123

    75. [75]

      Sun, Y. X.; Guo, G.; Ding, W. M.; Han, W. Y.; Li, J.; Deng, Z. P. A highly stable Eu-MOF multifunctional luminescent sensor for the effective detection of Fe3+, Cr2O72-/CrO42- and aspartic acid in aqueous systems. CrystEngComm 2022, 24, 1358-1367.  doi: 10.1039/D1CE01432C

    76. [76]

      Han, L. J.; Kong, Y. J.; Hou, G. Z.; Chen, H. C.; Zhang, X. M.; Zheng, H. G. A europium-based MOF fluorescent probe for efficiently detecting malachite green and uric acid. Inorg. Chem. 2020, 59, 7181-7187.  doi: 10.1021/acs.inorgchem.0c00620

    77. [77]

      Yang, Y.; Pang, J. D.; Li, Y. W.; Sun, L.; Zhang, H.; Zhang, L. X.; Xu, S. T.; Jiang, T. W. Fabrication of a stable europium-based luminescent sensor for fast detection of urinary 1-hydroxypyrene constructed from a tetracarboxylate ligand. Inorg. Chem. 2021, 60, 19189-19196.  doi: 10.1021/acs.inorgchem.1c02988

    78. [78]

      Zhang, Y.; Xu, X.; Yan, B. A multicolor-switchable fluorescent lanthanide MOFs triggered by anti-cancer drugs: multifunctional platform for anti-cancer drug sensing and information anticounterfeiting. J. Mater. Chem. C 2022, 10, 3576-3584.  doi: 10.1039/D1TC05935A

    79. [79]

      Yu, H. H.; Liu, Q.; Li, J.; Su, Z. M.; Li, X.; Wang, X. L.; Sun, J.; Zhou, C.; Hu, X. L. A dual-emitting mixed-lanthanide MOF with high waterstability for ratiometric fluorescence sensing of Fe3+ and ascorbic acid. J. Mater. Chem. C 2021, 9, 562-568.  doi: 10.1039/D0TC04781C

    80. [80]

      Cao, W. Q.; Xia, T. F.; Cui, Y. J.; Yu, Y.; Qian, G. D. Lanthanide metal-organic frameworks with nitrogen functional sites for the highly selective and sensitive detection of NADPH. Chem. Commun. 2020, 56, 10851-10854.  doi: 10.1039/D0CC04152A

    81. [81]

      Othong, J.; Boonmak, J.; Kielar, F.; Hadsadee, S.; Jungsuttiwong, S.; Youngme, S. Self-calibrating sensor with logic gate operation for anthrax biomarker based on nanoscaled bimetallic lanthanoid MOF. Sens. Actuators, B: Chem. 2020, 316, 128156.  doi: 10.1016/j.snb.2020.128156

    82. [82]

      Xia, C.; Xu, Y.; Cao, M. M.; Liu, Y. P.; Xia, J. F.; Jiang, D. Y.; Zhou, G. H.; Xie, R. J.; Zhang, D. F.; Li, H. L. A selective and sensitive fluorescent probe for bilirubin in human serum based on europium(Ⅲ) post-functionalized Zr(Ⅳ)-based MOFs. Talanta 2020, 212, 120795.  doi: 10.1016/j.talanta.2020.120795

    83. [83]

      Zhou, Y. N.; Liu, L. L.; Liu, Q. W.; Liu, X. X.; Feng, M. Z.; Wang, L.; Sun, Z. G.; Zhu, Y. Y.; Zhang, X.; Jiao, C. Q. Dual-functional metal-organic framework for luminescent detection of carcinoid biomarkers and high proton conduction. Inorg. Chem. 2021, 60, 17303-17314.  doi: 10.1021/acs.inorgchem.1c02655

    84. [84]

      Zhao, P. R.; Liu, Y. Q.; He, C.; Duan, C. Y. Synthesis of a lanthanide metal-organic framework and its fluorescent detection for phosphate group-based molecules such as adenosine triphosphate. Inorg. Chem. 2022, 61, 3132-3140.  doi: 10.1021/acs.inorgchem.1c03412

    85. [85]

      Shen, M. L.; Liu, B.; Xu, L.; Jiao, H. Ratiometric fluorescence detection of anthrax biomarker 2, 6-dipicolinic acid using hetero MOF sensors through ligand regulation. J. Mater. Chem. C 2020, 8, 4392-4400.  doi: 10.1039/D0TC00364F

    86. [86]

      Zhou, Z. D.; Wang, C. Y.; Zhu, G. S.; Du, B.; Yu, B. Y.; Wang, C. C. Water-stable europium(Ⅲ) and terbium(Ⅲ)-metal organic frameworks as fluorescent sensors to detect ions, antibiotics and pesticides in aqueous solutions. J. Mol. Struct. 2022, 1251, 132009.  doi: 10.1016/j.molstruc.2021.132009

    87. [87]

      Bünzli, J. C. G.; Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 2005, 34, 1048.  doi: 10.1039/b406082m

    88. [88]

      Zhang, X. J.; Wang, W. J.; Hu, Z. J.; Wang, G. N.; Uvdal, K. Coordination polymers for energy transfer: preparations, properties, sensing applications, and perspectives. Coord. Chem. Rev. 2015, 284, 206-235.  doi: 10.1016/j.ccr.2014.10.006

    89. [89]

      Sabbatini, N.; Guardigli, M. Luminescent lanthanide complexes as photochemical supramolecular devices. Coord. Chem. Rev. 1993, 123, 201-228.  doi: 10.1016/0010-8545(93)85056-A

    90. [90]

      Kim, H. J.; Lee, J. E.; Kim, Y. S.; Park, N. G. Ligand effect on the electroluminescence mechanism in lanthanide(Ⅲ) complexes. Opt. Mater. 2002, 21, 181-186.

    91. [91]

      Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126-1162.  doi: 10.1021/cr200101d

    92. [92]

      Zhao, Y. F.; Li, D. Lanthanide-functionalized metal-organic frameworks as ratiometric luminescent sensors. J. Mater. Chem. C 2020, 8, 12739-12754.  doi: 10.1039/D0TC03430D

    93. [93]

      Cui, Y. J.; Chen, B. L.; Qian, G. D. Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coord. Chem. Rev. 2014, 273-274, 76-86.

    94. [94]

      Mahata, P.; Mondal, S. K.; Singha, D. K.; Majee, P. Luminescent rare-earth-based MOFs as optical sensors. Dalton Trans. 2017, 46, 301-328.  doi: 10.1039/C6DT03419E

    95. [95]

      Yan, B. Luminescence response mode and chemical sensing mechanism for lanthanide-functionalized metal-organic framework hybrids. Inorg. Chem. Front. 2021, 8, 201-233.  doi: 10.1039/D0QI01153C

    96. [96]

      Firmino, A. D. G.; Figueira, F.; Tomé, J. P. C.; Paz, F. A. A.; Rocha, J. Metal-organic frameworks assembled from tetraphosphonic ligands and lanthanides. Coord. Chem. Rev. 2018, 355, 133-149.  doi: 10.1016/j.ccr.2017.08.001

    97. [97]

      Zhao, S. N.; Wang, G. B.; Poelman, D.; Voort, P. V. D. Luminescent lanthanide MOFs: a unique platform for chemical sensing. Materials 2018, 11, 572.  doi: 10.3390/ma11040572

    98. [98]

      Li, X. J.; Lu, S.; Tu, D. T.; Zheng, W.; Chen, X. Y. Luminescent lanthanide metal-organic framework nanoprobes: from fundamentals to bioapplications. Nanoscale 2020, 12, 15021-15035.  doi: 10.1039/D0NR03373A

    99. [99]

      Yan, B. Lanthanide-functionalized metal-organic framework hybrid systems to create multiple luminescent centers for chemical sensing. Acc. Chem. Res. 2017, 50, 2789-2798.  doi: 10.1021/acs.accounts.7b00387

    100. [100]

      Afzal, S.; Maitra, U. Sensitized lanthanide photoluminescence based sensors-a review. Helv. Chim. Acta 2022, 105, e202100194.

    101. [101]

      Li, B.; Zhao, D. S.; Wang, F.; Zhang, X. X.; Li, W. Q.; Fan, L. M. Recent advances in molecular logic gate chemosensors based on luminescent metal organic frameworks. Dalton Trans. 2021, 50, 14967-14977.  doi: 10.1039/D1DT02841C

    102. [102]

      Gorai, T.; Schmitt, W.; Gunnlaugsson, T. Highlights of the development and application of luminescent lanthanide based coordination polymers, MOFs and functional nanomaterials. Dalton Trans. 2021, 50, 770-784.  doi: 10.1039/D0DT03684F

    103. [103]

      Liang, G. M.; Wang, S.; Xu, M. Y.; Chen, H. L.; Liang, G. Y.; Gui, L. C.; Wang, X. J. 2D lanthanide coordination polymers constructed from a semi-rigid tricarboxylic acid ligand: crystal structure, luminescence sensing and color tuning. CrystEngComm 2020, 22, 6161-6169.  doi: 10.1039/D0CE00968G

    104. [104]

      Shi, Y. W.; Ye, J. W.; Qi, Y.; Akram, M. A.; Rauf, A.; Ning, G. L. An anionic layered europium(Ⅲ) coordination polymer for solvent-dependent selective luminescence sensing of Fe3+ and Cu2+ ions and latent fingerprint detection. Dalton Trans. 2018, 47, 17479-17485.  doi: 10.1039/C8DT04042G

    105. [105]

      Yuan, M.; Tang, Q.; Lu, Y.; Zhang, Z.; Li, X. H.; Liu, S. M.; Sun, X. W.; Liu, S. X. Using the luminescence and ion sensing experiment of a lanthanide metal-organic framework to deepen and extend undergraduates' understanding of the antenna effect. J. Chem. Educ. 2019, 96, 1256-1261.  doi: 10.1021/acs.jchemed.9b00075

    106. [106]

      Xu, Q. W.; Dong, G. Y.; Cui, R. F.; Li, X. 3D lanthanide-coordination frameworks constructed by a ternary mixed-ligand: crystal structure, luminescence and luminescence sensing. CrystEngComm 2020, 22, 740-750.  doi: 10.1039/C9CE01779H

    107. [107]

      Li, H. H.; Han, Y. B.; Shao, Z. C.; Li, N.; Huang, C.; Hou, H. W. Water-stable Eu-MOF fluorescent sensors for trivalent metal ions and nitrobenzene. Dalton Trans. 2017, 46, 12201-12208.  doi: 10.1039/C7DT02590D

    108. [108]

      Puglisi, R.; Pellegrino, A. L.; Fiorenza, R.; Scirè, S.; Malandrino, G. A facile one-pot approach to the synthesis of Gd-Eu based metal-organic frameworks and applications to sensing of Fe3+ and Cr2O72- ions. Sensors 2021, 21, 1679.  doi: 10.3390/s21051679

    109. [109]

      Gomez, G. E.; Afonso, M. D. S.; Baldoni, H. A.; Roncaroli, F.; Soler-Illia, G. J. A. A. Luminescent lanthanide metal organic frameworks as chemosensing platforms towards agrochemicals and cations. Sensors 2019, 19, 1260.

    110. [110]

      Chen, M.; Wu, K. Y.; Pan, W. L.; Huang, N. H.; Li, R. T.; Chen, J. X. Selective and recyclable tandem sensing of PO43- and Al3+ by a waterstable terbium-based metal-organic framework. Spectrochim. Acta, Part A: Mol. and Biomol. Spectrosc. 2021, 247, 119084.  doi: 10.1016/j.saa.2020.119084

    111. [111]

      Li, J. X.; Yu, B. Q.; Fan, L. H.; Wang, L.; Zhao, Y. C.; Sun, C. Y.; Li, W. J.; Chang, Z. D. A novel multifunctional Tb-MOF fluorescent probe displaying excellent abilities for highly selective detection of Fe3+, Cr2O72- and acetylacetone. J. Solid State Chem. 2022, 306, 122782.  doi: 10.1016/j.jssc.2021.122782

    112. [112]

      Pang, J. J.; Du, R. H.; Lian, X.; Yao, Z. Q.; Xu, J.; Bu, X. H. Selective sensing of Cr and Fe ions in aqueous solution by an exceptionally stable Tb-organic framework with an AIE-active ligand. Chin. Chem. Lett. 2021, 32, 2443-2447.  doi: 10.1016/j.cclet.2021.01.040

    113. [113]

      Li, B.; Dong, J. P.; Zhou, Z.; Wang, R.; Wang, L. Y.; Zang, S. Q. Robust lanthanide metal-organic frameworks with ''all-in-one'' multifunction: efficient gas adsorption and separation, tunable light emission and luminescence sensing. J. Mater. Chem. C 2021, 9, 3429-3439.  doi: 10.1039/D0TC05707J

    114. [114]

      Zhao, Y. M.; Zhai, X.; Shao, L.; Li, L. L; Liu, Y. L.; Zhang, X. M.; Liu, J. H.; Meng, F. B.; Yu, F. An ultra-high quantum yield Tb-MOF with phenolic hydroxyl as the recognition group for a highly selective and sensitive detection of Fe3+. J. Mater. Chem. C 2021, 9, 15840-15847.  doi: 10.1039/D1TC04311K

    115. [115]

      Sun, Z.; Sun, J.; Xi, L.; Xie, J.; Wang, X. F.; Ma, Y.; Li, L. C. Two novel lanthanide metal-organic frameworks: selective luminescent sensing for nitrobenzene, Cu2+, and MnO4-. Cryst. Growth Des. 2020, 20, 5225-5234.  doi: 10.1021/acs.cgd.0c00432

    116. [116]

      Du, Y.; Yang, H. Y.; Liu, R. J.; Shao, C. Y.; Yang, L. R. A multiresponsive chemosensor for highly sensitive and selective detection of Fe3+, Cu2+, Cr2O72- and nitrobenzene based on a luminescent lanthanide metal-organic framework. Dalton Trans. 2020, 49, 13003-13016.  doi: 10.1039/D0DT02120B

    117. [117]

      Liao, W. M.; Wei, M. J.; Mo, J. T.; Fu, P. Y.; Fan, Y. N.; Pan, M.; Su, C. Y. Acidity and Cd2+ fluorescent sensing and selective CO2 adsorption by a water-stable Eu-MOF. Dalton Trans. 2019, 48, 4489-4494.  doi: 10.1039/C9DT00539K

    118. [118]

      Wang, X. Y.; Yao, X.; Huang, Q.; Li, Y. X.; An, G. H.; Li, G. M. Triple-wavelength-region luminescence sensing based on a color-tunable emitting lanthanide metal organic framework. Anal. Chem. 2018, 90, 6675-6682.  doi: 10.1021/acs.analchem.8b00494

    119. [119]

      Wang, S. J.; Li, Q.; Xiu, G. L.; You, L. X.; Ding, F.; Deun, R. V.; Dragutan, L.; Dragutand, V.; Sun, Y. G. New Ln-MOFs based on mixed organic ligands: synthesis, structure and efficient luminescence sensing of the Hg2+ ions in aqueous solutions. Dalton Trans. 2021, 50, 15612-15619.  doi: 10.1039/D1DT02687A

    120. [120]

      Wang, X. K.; Wang, Y. T.; Wang, X.; Lu, K. B.; Jiang, W. F.; Cui, P. P.; Hao, H. G.; Dai, F. N. Two series of Ln-MOFs by solvent induced self-assembly demonstrating the rapid selective sensing of Mg2+ and Fe3+ cations. Dalton Trans. 2020, 49, 15473-15480.  doi: 10.1039/D0DT03264F

    121. [121]

      Wang, J. Y. S.; Yu, M. X.; Chen, L.; Li, Z. J.; Li, S. C.; Jiang, F. L.; Hong, M. C. Construction of a stable lanthanide metal-organic framework as a luminescent probe for rapid naked-eye recognition of Fe3+ and acetone. Molecules 2021, 26, 1695.  doi: 10.3390/molecules26061695

    122. [122]

      Li, J. L.; Xiao, Y.; Wang, L. Y.; Xing, Y. H.; Bai, F. Y.; Shi, Z. Oriented construction of the mixed-metal organic framework with triazine hexacarboxylic acid and fluorescence detection: Fe3+, Cr2O72- and TNP. Polyhedron 2022, 214, 115648.  doi: 10.1016/j.poly.2021.115648

    123. [123]

      Sun, T. C.; Fan, R. Q.; Xiao, R.; Xing, T. F.; Qin, M. Y.; Liu, Y. Q.; Hao, S. Chen, W.; Yang, Y. L. Anionic Ln-MOF with tunable emission for heavy metal ion capture and L-cysteine sensing in serum. J. Mater. Chem. A 2020, 8, 5587-5594.  doi: 10.1039/C9TA13932J

    124. [124]

      Lin, Z. G.; Song, F. Q.; Wang, H.; Song, X. Q.; Yu, X. X.; Liu, W. S. The construction of a novel luminescent lanthanide framework for the selective sensing of Cu2+ and 4-nitrophenol in water. Dalton Trans. 2021, 50, 1874-1886.  doi: 10.1039/D0DT04089D

    125. [125]

      Chen, Z.; Cai, Y. J.; Ma, Y. J.; Huang, L.; Zhao, Y. L.; Wang, L. Luminescent lanthanide complex sensor for Acac and Cd2+. Photochem. Photobiol. 2021, 97, 664-671.  doi: 10.1111/php.13366

    126. [126]

      He, Q. Q.; Yao, S. L.; Zheng, T. F.; Xu, H.; Liu, S. J.; Chen, J. L.; Li, N.; Wen, H. R. A multi-responsive luminescent sensor based on a stable Eu(Ⅲ) metal-organic framework for sensing Fe3+, MnO4-, and Cr2O72- in aqueous solutions. CrystEngComm 2022, 24, 1041-1048.  doi: 10.1039/D1CE01503F

    127. [127]

      Li, X.; Tang, J. X.; Liu, H.; Gao, K.; Meng, X. R.; Wu, J.; Hou, H. W. A highly sensitive and recyclable Ln-MOF luminescent sensor for the efficient detection of Fe3+ and Cr anions. Chem. Asian J. 2019, 14, 3721-3727.  doi: 10.1002/asia.201900936

    128. [128]

      Xu, X. Y.; Yan, B. A fluorescent wearable platform for sweat Cl- analysis and logic smart-device fabrication based on color adjustable lanthanide MOFs. J. Mater. Chem. C 2018, 6, 1863-1869.  doi: 10.1039/C7TC05204A

    129. [129]

      Dong, Z. P.; Zhao, F.; Zhang, L.; Liu, Z. L.; Wang, Y. Q. A white-light-emitting lanthanide metal-organic framework for luminescence turn-off sensing of MnO4- and turn-on sensing of folic acid and construction of a "turn-on plus" system. New J. Chem. 2020, 44, 10239-10249.  doi: 10.1039/D0NJ02145H

    130. [130]

      Duan, L. J.; Zhang, C. C.; Cen, P. P.; Jin, X. Y.; Liang, C.; Yang, J. H.; Liu, X. Y. Stable Ln-MOFs as multi-responsive photoluminescence sensors for the sensitive sensing of Fe3+, Cr2O72-, and nitrofuran. CrystEngComm 2020, 22, 1695-1704.  doi: 10.1039/C9CE01995B

    131. [131]

      Li, M. H.; Lv, S. L.; You, M. H.; Lin, M. L. Three-component D-A hybrid heterostructures with enhanced photochromic, photomodulated luminescence and selective anion-sensing properties. Dalton Trans. 2020, 49, 13083-13089.  doi: 10.1039/D0DT02390F

    132. [132]

      Li, Z. D.; Zhan, Z. Y.; Jia, Y. J.; Li, Z.; Hu, M. A water-stable europium-MOF as a multifunctional luminescent sensor for some inorganic ions and dichloromethane molecule. J. Ind. Eng. Chem. 2021, 97, 180-187.  doi: 10.1016/j.jiec.2020.12.036

    133. [133]

      Li, B.; Zhou, J.; Bai, F. Y.; Xing, Y. H. Lanthanide-organic framework based on a 4, 4-(9, 9-dimethyl-9H-fluorene-2, 7-diyl) dibenzoic acid: synthesis, structure and fluorescent sensing for a variety of cations and anions simultaneously. Dyes and Pigments 2020, 172, 107862.  doi: 10.1016/j.dyepig.2019.107862

    134. [134]

      Yuan, Z. D.; Hou, G. Z.; Han, L. J. A terbium-based MOF as fluorescent probe for the detection of malachite green, Fe3+ and MnO4-. Z. Anorg. Allg. Chem. 2021, 647, 1-9.  doi: 10.1002/zaac.202170011

    135. [135]

      Li, Z. Y.; Cai, W. Y.; Yang, X. M.; Zhou, A. L.; Zhu, Y.; Wang, H.; Zhou, X.; Xiong, K. C.; Zhang, Q. F.; Gai, Y. L. Cationic metal-organic frameworks based on linear zwitterionic ligands for Cr2O72- and ammonia sensing. Cryst. Growth Des. 2020, 20, 3466-3473.  doi: 10.1021/acs.cgd.0c00247

    136. [136]

      Tan, G.; Jia, R. Q.; Wu, W. L.; Li, B.; Wang, L. Y. Highly pH-stable Ln-MOFs as sensitive and recyclable multifunctional materials: luminescent probe, tunable luminescent, and photocatalytic performance. Cryst. Growth Des. 2022, 22, 323-333.  doi: 10.1021/acs.cgd.1c00956

    137. [137]

      Zhang, P. F.; Yang, G. P.; Li, G. P.; Yang, F.; Liu, W. N.; Li, J. Y.; Wang, Y. Y. Series of water-stable lanthanide metal-organic frameworks based on carboxylic acid imidazolium chloride: tunable luminescent emission and sensing. Inorg. Chem. 2019, 58, 13969-13978.  doi: 10.1021/acs.inorgchem.9b01954

    138. [138]

      Ma, J. J.; Liu, W. S. Effective luminescence sensing of Fe3+, Cr2O72-, MnO4- and 4-nitrophenol by lanthanide metal-organic frameworks with a new topology type. Dalton Trans. 2019, 48, 12287-12295.  doi: 10.1039/C9DT01907C

    139. [139]

      Dong, Z. P.; Zhao, F.; Zhang, L.; Liu, Z. L.; Wang, Y. Q. A white-light-emitting lanthanide metal-organic framework for luminescence turn-off sensing of MnO4- and turn-on sensing of folic acid and construction of a ''turn-on plus'' system. New J. Chem. 2020, 44, 10239-10249.  doi: 10.1039/D0NJ02145H

    140. [140]

      Lu, Y. N.; Peng, J. L.; Zhou, X.; Wu, J. Z.; Ou, Y. C.; Cai, Y. P. Rapid naked-eye luminescence detection of carbonate ion through acetonitrile hydrolysis induced europium complexes. CrystEngComm 2018, 20, 7574-7581.  doi: 10.1039/C8CE01414K

    141. [141]

      Min, H.; Han, Z. S.; Wang, M. M.; Li, Y. J.; Zhou, T. Z.; Shi, W.; Cheng, P. A water-stable terbium metal-organic framework as a highly sensitive fluorescent sensor for nitrite. Inorg. Chem. Front. 2020, 7, 3379-3385.  doi: 10.1039/D0QI00780C

    142. [142]

      Li, B.; Zhou, J.; Bai, F. Y.; Xing, Y. H. Lanthanide-organic framework based on a 4, 4-(9, 9-dimethyl-9H-fluorene-2, 7-diyl) dibenzoic acid: synthesis, structure and fluorescent sensing for a variety of cations and anions simultaneously. Dyes and Pigments 2020, 172, 107862.  doi: 10.1016/j.dyepig.2019.107862

    143. [143]

      Yu, M. K.; Yao, X.; Wang, X. Y.; Li, Y. X.; Li, G. M. White-light-emitting decoding sensing for eight frequently-used antibiotics based on a lanthanide metal-organic framework. Polymers 2019, 11, 99.  doi: 10.3390/polym11010099

    144. [144]

      Yang, H. W.; Xu, P.; Wang, X. G.; Zhao, X. J.; Yang, E. C. A highly stable (4, 8)-connected Tb-MOF exhibiting efficiently luminescent sensing towards nitroimidazole antibiotics. Z. Anorg. Allg. Chem. 2020, 646, 23-29.  doi: 10.1002/zaac.201900271

    145. [145]

      Jiang, M. Y.; Yu, L.; Zhou, Y. C.; Jia, J.; Si, X. J.; Dong, W. W.; Tian, Z. F.; Zhao, J.; Li, D. S. A novel d-f heterometallic Cd-Eu metal-organic framework as a sensitive luminescent sensor for the dual detection of ronidazole and 4-nitrophenol. Z. Anorg. Allg. Chem. 2020, 646, 268-274.  doi: 10.1002/zaac.201900283

    146. [146]

      Zhu, Q. Q.; He, H. H.; Yan, Y.; Yuan, J.; Lu, D. Q.; Zhang, D. Y.; Sun, F. X.; Zhu, G. S. An exceptionally stable Tb-based metal-organic framework for selectively and sensitively detecting antibiotics in aqueous solution. Inorg. Chem. 2019, 58, 7746-7753.  doi: 10.1021/acs.inorgchem.9b00147

    147. [147]

      Guo, F.; Su, C. H.; Fan, Y. H.; Shi, W. B. An excellently stable Tb-organic framework with outstanding stability as a rapid, reversible, and multi-responsive luminescent sensor in water. Dalton Trans. 2019, 48, 12910-12917.  doi: 10.1039/C9DT02921D

    148. [148]

      Wang, X. M.; Liu, C.; Wang, M.; Zhou, X. H.; You, Y. J.; Xiao, H. P. A selective fluorescence turn-on sensing coordination polymer for antibiotic aztreonam. Chem. Commun. 2022, 58, 4667-4670  doi: 10.1039/D2CC00007E

    149. [149]

      Guo, Z. H.; Zhang, P. F.; Ma, L. L.; Deng, Y. X.; Yang, G. P.; Wang, Y. Y. Lanthanide-organic frameworks with uncoordinated Lewis base sites: tunable luminescence, antibiotic detection, and anticounterfeiting. Inorg. Chem. 2022, 61, 6101-6109.  doi: 10.1021/acs.inorgchem.2c00224

    150. [150]

      Li, B.; Jiang, Y. Y.; Sun, Y. Y.; Wang, Y. J.; Han, M. L.; Wu, Y. P.; Ma, L. F.; Li, D. S. The highly selective detecting of antibiotics and support of noble metal catalysts by a multifunctional Eu-MOF. Dalton Trans. 2020, 49, 14854-14862.  doi: 10.1039/D0DT03176C

    151. [151]

      Lei, M. Y.; Ge, F. Y.; Gao, X. J.; Shi, Z. Q.; Zheng, H. G. A water-stable Tb-MOF as a rapid, accurate, and highly sensitive ratiometric luminescent sensor for the discriminative sensing of antibiotics and D2O in H2O. Inorg. Chem. 2021, 60, 10513-10521.  doi: 10.1021/acs.inorgchem.1c01145

    152. [152]

      Xue, Y. S.; Ding, J.; Sun, D. L.; Cheng, W. W.; Chen, X. R.; Huang, X. C.; Wang, J. 3D Ln-MOFs as multi-responsive luminescent probes for efficient sensing of Fe3+, Cr2O72-, and antibiotics in aqueous solution. CrystEngComm 2021, 23, 3838-3848.  doi: 10.1039/D1CE00399B

    153. [153]

      Fu, Y.; Zhang, R.; Lv, P.; Chen, F.; Xu, W. Eu-based metal-organic framework as a multi-responsive fluorescent sensor for efficient detecting Cr2O72- and tetracycline hydrochloride. J. Solid State Chem. 2022, 306, 122724.  doi: 10.1016/j.jssc.2021.122724

    154. [154]

      Wu, S. Y.; Zhu, M. C.; Zhang, Y.; Kosinova, M.; Fedin, V. P.; Gao, E. J. A water-stable lanthanide coordination polymer as multicenter platform for ratiometric luminescent sensing antibiotics. Chem. Eur. J. 2020, 26, 3137-3144.  doi: 10.1002/chem.201905027

    155. [155]

      Yu, M. K.; Xie, Y.; Wang, X. Y.; Li, Y. X.; Li, G. M. Highly water-stable Dye@Ln-MOFs for sensitive and selective detection toward antibiotics in water. ACS Appl. Mater. Interfaces 2019, 11, 21201-21210.  doi: 10.1021/acsami.9b05815

    156. [156]

      Duan, L. J.; Zhang, C. C.; Cen, P. P.; Jin, X. Y.; Liang, C.; Yang J. H.; Liu, X. Y. Stable Ln-MOFs as multi-responsive photoluminescence sensors for the sensitive sensing of Fe3+, Cr2O72-, and nitrofuran. CrystEngComm 2020, 22, 1695-1704.  doi: 10.1039/C9CE01995B

    157. [157]

      Ren, K.; Wu, S. H.; Guo, X. F.; Wang, H. Lanthanide organic framework as a reversible luminescent sensor for sulfamethazine antibiotics. Inorg. Chem. 2019, 58, 4223-4229.  doi: 10.1021/acs.inorgchem.8b03284

    158. [158]

      Ma, Y. X.; Zhu, M. C.; Zhang, Y.; Gao, E. J.; Wu, S, Y. A multiemissive lanthanide metal-organic framework for selective detection of L-tryptophan. Inorg. Chim. Acta 2022, 537, 120928.  doi: 10.1016/j.ica.2022.120928

    159. [159]

      Xia, T. F.; Wan, Y. T.; Li, Y. P.; Zhang, J. Highly stable lanthanide metal-organic framework as an internal calibrated luminescent sensor for glutamic acid, a neuropathy biomarker. Inorg. Chem. 2020, 59, 8809-8817.  doi: 10.1021/acs.inorgchem.0c00544

    160. [160]

      Yang, D. D.; Lu, L. P.; Feng, S. S.; Zhu, M. L. First Ln-MOF as a trifunctional luminescent probe for the efficient sensing of aspartic acid, Fe3+ and DMSO. Dalton Trans. 2020, 49, 7514-7524.  doi: 10.1039/D0DT00938E

    161. [161]

      Li, Y. G.; Hu, J. J.; Zhang, J. L.; Liu, S. J.; Peng, Y.; Wen, H. R. Lanthanide-based metal-organic framework materials as bifunctional fluorescence sensors toward acetylacetone and aspartic acid. CrystEngComm 2022, 24, 2464-2471.  doi: 10.1039/D2CE00174H

    162. [162]

      Zhao, X. Y.; Wang, J.; Yang, Q. S.; Fu, D. L.; Jiang, D. K. A hydrostable samarium(Ⅲ)-MOF sensor for the sensitive and selective detection of tryptophan based on a "dual antenna effect". Anal. Methods 2021, 13, 3994-4000.  doi: 10.1039/D1AY01050F

    163. [163]

      Wang, T. T.; Liu, J. Y.; Guo, R.; An, J. D.; Huo, J. Z.; Liu, Y. Y.; Shi, W.; Ding, B. Solvothermal preparation of a lanthanide metal-organic framework for highly sensitive discrimination of nitrofurantoin and L-tyrosine. Molecules 2021, 26, 3673.  doi: 10.3390/molecules26123673

    164. [164]

      Zhang, Y.; Lian, X.; Yan, B. A dual-functional intelligent logic detector based on new Ln-MOFs: first visual logical probe for the two-dimensional monitoring of pyrethroid biomarkers. J. Mater. Chem. C 2020, 8, 3023-3028.  doi: 10.1039/C9TC06335H

    165. [165]

      Wang, X. Q.; Ma, X. H.; Feng, D. D.; Tang, J.; Wu, D.; Yang, J.; Jiao, J. J. Four novel lanthanide(Ⅲ) metal-organic frameworks: tunable light emission and multiresponsive luminescence sensors for vitamin B6 and pesticides. Cryst. Growth Des. 2021, 21, 2889-2897.  doi: 10.1021/acs.cgd.1c00080

    166. [166]

      Qu, X. L.; Yan, B. Zn(Ⅱ)/Cd(Ⅱ)-based metal-organic frameworks: crystal structures, Ln(Ⅲ)-functionalized luminescence and chemical sensing of dichloroaniline as a pesticide biomarker. J. Mater. Chem. C 2020, 8, 9427-9439.  doi: 10.1039/D0TC02200D

    167. [167]

      Zhang, W.; Xie, J.; Sui, Z. Y.; Xu, Z. J.; Wang, X. Z.; Lei, M.; Zhang, H. F.; Li, Z. Y.; Wang, Y. L.; Liu, W.; Du, W.; Wang, S. A. Ratiometric recognition of humidity by a europium-organic framework equipped with quasi-open metal site. Sci. China Chem. 2021, 64, 1723-1729.  doi: 10.1007/s11426-021-1050-1

    168. [168]

      Huizi-Rayo, U.; Zabala-Lekuona, A.; Terenzi, A.; Cruz, C. M.; Cuerva, J. M.; Rodrı´guez-Die´guez, A.; Garcı´a, J. A.; Seco, J. M.; Sebastian, E. S.; Ceped, J. Influence of thermally induced structural transformations on the magnetic and luminescence properties of tartrate-based chiral lanthanide organic-frameworks. J. Mater. Chem. C 2020, 8, 8243-8256.  doi: 10.1039/D0TC00736F

  • 加载中
    1. [1]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    2. [2]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    3. [3]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    4. [4]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    5. [5]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    6. [6]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    7. [7]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    8. [8]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    9. [9]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    10. [10]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    11. [11]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    12. [12]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    13. [13]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    14. [14]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    15. [15]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    16. [16]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    17. [17]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    18. [18]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    19. [19]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    20. [20]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

Metrics
  • PDF Downloads(23)
  • Abstract views(981)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return