Citation: Wumei Cao, Yang Lu, Yi-Fan Huang. An In-Situ Variable-Temperature Surface-Enhanced Raman Spectroscopic Study of the Plasmon-Mediated Selective Oxidation of p-Aminothiophenol[J]. Chinese Journal of Structural Chemistry, ;2022, 41(10): 221007. doi: 10.14102/j.cnki.0254-5861.2022-0134 shu

An In-Situ Variable-Temperature Surface-Enhanced Raman Spectroscopic Study of the Plasmon-Mediated Selective Oxidation of p-Aminothiophenol

  • Corresponding author: Yi-Fan Huang, huangyf@shanghaitech.edu.cn
  • Received Date: 22 May 2022
    Accepted Date: 11 June 2022
    Available Online: 20 June 2022

Figures(4)

  • The roles of temperature change in surface-enhanced Raman scattering (SERS) hotspots are important for understanding the plasmon-mediated selective oxidation of p-aminothiophenol in a SERS measurement. Here, we demonstrate that the temperature change in hotspots seriously influences the conversion of p-aminothiophenol on Au by employing variable-temperature SERS measurements. The conversion steadily and irreversibly increased when the temperature increased from 100 to 360 K. But the conversion decreased above 360 K, because this conversion was exothermic. This temperature-dependence conversion suggests that the temperature change in hotspots originated from the photothermal effect should be coupled to the hot-electron effect in promoting the selective oxidation of p-aminothiophenol.
  • 加载中
    1. [1]

      Brus, L. Noble metal nanocrystals: plasmon electron transfer photo-chemistry and single-molecule raman spectroscopy. Acc. Chem. Res. 2008, 41, 1742-1749.

    2. [2]

      Linic, S.; Christopher, P.; Xin, H.; Marimuthu, A. Catalytic and photo-catalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties. Acc. Chem. Res. 2013, 46, 1890-1899.  doi: 10.1021/ar3002393

    3. [3]

      Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nano 2015, 10, 25-34.  doi: 10.1038/nnano.2014.311

    4. [4]

      Moskovits, M. The case for plasmon-derived hot carrier devices. Nat. Nano 2015, 10, 6-8.  doi: 10.1038/nnano.2014.280

    5. [5]

      Wu, D. Y.; Liu, X. M.; Huang, Y. F.; Ren, B.; Xu, X.; Tian, Z. Q. Surface catalytic coupling reaction of p-mercaptoaniline linking to silver nanostructures responsible for abnormal sers enhancement: a DFT study. J. Phys. Chem. C 2009, 113, 18212-18222.  doi: 10.1021/jp9050929

    6. [6]

      Fang, Y.; Li, Y.; Xu, H.; Sun, M. Ascertaining p, p′-dimercapto-azobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles. Langmuir 2010, 26, 7737-7746.  doi: 10.1021/la904479q

    7. [7]

      Huang, Y. F.; Zhu, H. P.; Liu, G. K.; Wu, D. Y.; Ren, B.; Tian, Z. Q. When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J. Am. Chem. Soc. 2010, 132, 9244-9246.  doi: 10.1021/ja101107z

    8. [8]

      da Silva, A. G. M.; Rodrigues, T. S.; Correia, V. G.; Alves, T. V.; Alves, R. S.; Ando, R. A.; Ornellas, F. R.; Wang, J.; Andrade, L. H.; Camargo, P. H. C. Plasmonic nanorattles as next-generation catalysts for surface plasmon resonance-mediated oxidations promoted by activated oxygen. Angew. Chem. Int. Ed. 2016, 55, 7111-7115.

    9. [9]

      Jiang, R.; Zhang, M.; Qian, S. -L.; Yan, F.; Pei, L. -Q.; Jin, S.; Zhao, L. -B.; Wu, D. -Y.; Tian, Z. -Q. Photoinduced surface catalytic coupling reactions of aminothiophenol derivatives investigated by SERS and DFT. J. Phys. Chem. C 2016, 120, 16427-16436.  doi: 10.1021/acs.jpcc.6b04638

    10. [10]

      Devasenathipathy, R.; Wang, J. -Z.; Xiao, Y. -H.; Rani, K. K.; Lin, J. -D.; Zhang, Y. -M.; Zhan, C.; Zhou, J. -Z.; Wu, D. -Y.; Tian, Z. -Q. Plasmonic photoelectrochemical coupling reactions of para-aminobenzoic acid on nano-structured gold electrodes. J. Am. Chem. Soc. 2022, 144, 3821-3832.  doi: 10.1021/jacs.1c10447

    11. [11]

      Sun, M.; Xu, H. A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. Small 2012, 8, 2777-2786.  doi: 10.1002/smll.201200572

    12. [12]

      Huang, Y. F.; Wu, D. Y.; Zhu, H. P.; Zhao, L. B.; Liu, G. K.; Ren, B.; Tian, Z. Q. Surface-enhanced Raman spectroscopic study of p-aminothiophenol. Phys. Chem. Chem. Phys. 2012, 14, 8485-8497.  doi: 10.1039/c2cp40558j

    13. [13]

      Kazuma, E.; Kim, Y. Mechanistic studies of plasmon chemistry on metal catalysts. Angew. Chem. Int. Ed. 2019, 58, 4800-4808.  doi: 10.1002/anie.201811234

    14. [14]

      Cortés, E.; Grzeschik, R.; Maier, S. A.; Schlücker, S. Experimental characterization techniques for plasmon-assisted chemistry. Nat. Rev. Chem. 2022, 6, 259-274.  doi: 10.1038/s41570-022-00368-8

    15. [15]

      van Schrojenstein Lantman, E. M.; Deckert-Gaudig, T.; Mank, A. J. G.; Deckert, V.; Weckhuysen, B. M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nano 2012, 7, 583-586.  doi: 10.1038/nnano.2012.131

    16. [16]

      Sun, M.; Fang, Y.; Zhang, Z.; Xu, H. Activated vibrational modes and Fermi resonance in tip-enhanced Raman spectroscopy. Phys. Rev. E 2013, 87, 020401.
       

    17. [17]

      Zhang, Z.; Deckert-Gaudig, T.; Deckert, V. Label-free monitoring of plasmonic catalysis on the nanoscale. Analyst 2015, 140, 4325-4335.  doi: 10.1039/C5AN00630A

    18. [18]

      Sun, J. -J.; Su, H. -S.; Yue, H. -L.; Huang, S. -C.; Huang, T. -X.; Hu, S.; Sartin, M. M.; Cheng, J.; Ren, B. Role of adsorption orientation in surface plasmon-driven coupling reactions studied by tip-enhanced raman spectroscopy. J. Phys. Chem. Lett. 2019, 10, 2306-2312.  doi: 10.1021/acs.jpclett.9b00203

    19. [19]

      Sheng, S.; Ji, Y.; Yan, X.; Wei, H.; Luo, Y.; Xu, H. Azo-dimerization mechanisms of p-aminothiophenol and p-nitrothiophenol molecules on plasmonic metal surfaces revealed by tip-/surface-enhanced raman spectroscopy. J. Phys. Chem. C 2020, 124, 11586-11594.

    20. [20]

      Dong, B.; Fang, Y.; Chen, X.; Xu, H.; Sun, M. Substrate-, wavelength-, and time-dependent plasmon-assisted surface catalysis reaction of 4-nitrobenzenethiol dimerizing to p, p′-dimercaptoazobenzene on Au, Ag, and Cu films. Langmuir 2011, 27, 10677-10682.  doi: 10.1021/la2018538

    21. [21]

      Xu, P.; Kang, L.; Mack, N. H.; Schanze, K. S.; Han, X.; Wang, H. -L. Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol. Sci. Rep. 2013, 3, 2997.
       

    22. [22]

      Huang, Y. F.; Zhang, M.; Zhao, L. B.; Feng, J. M.; Wu, D. Y.; Ren, B.; Tian, Z. Q. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angew. Chem. Int. Ed. 2014, 53, 2353-2357.
       

    23. [23]

      Inagaki, T.; Kagami, K.; Arakawa, E. T. Photoacoustic observation of nonradiative decay of surface plasmons in silver. Phys. Rev. B 1981, 24, 3644-3646.
       

    24. [24]

      Baffou, G.; Quidant, R. Nanoplasmonics for chemistry. Chem. Soc. Rev. 2014, 43, 3898-3907.

    25. [25]

      Baffou, G.; Quidant, R.; Girard, C. Heat generation in plasmonic nanostructures: influence of morphology. Appl. Phys. Lett. 2009, 94, 153109.
       

    26. [26]

      Baffou, G.; Quidant, R. Thermo-plasmonics: using metallic nano-structures as nano-sources of heat. Laser Photonics Rev. 2013, 7, 171-187.

    27. [27]

      Golubev, A. A.; Khlebtsov, B. N.; Rodriguez, R. D.; Chen, Y.; Zahn, D. R. T. Plasmonic heating plays a dominant role in the plasmon-induced photocatalytic reduction of 4-nitrobenzenethiol. J. Phys. Chem. C 2018, 122, 5657-5663.
       

    28. [28]

      Sarhan, R. M.; Koopman, W.; Schuetz, R.; Schmid, T.; Liebig, F.; Koetz, J.; Bargheer, M. The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol. Sci. Rep. 2019, 9, 3060.

    29. [29]

      Zhang, Q.; Zhou, Y.; Fu, X.; Villarreal, E.; Sun, L.; Zou, S.; Wang, H. Photothermal effect, local field dependence, and charge carrier relaying species in plasmon-driven photocatalysis: a case study of aerobic nitro-thiophenol coupling reaction. J. Phys. Chem. C 2019, 123, 26695-26704.

    30. [30]

      Lu, Y.; Wu, L. -W.; Cao, W.; Huang, Y. -F. Finding a sensitive surface-enhanced raman spectroscopic thermometer at the nanoscale by examining the functional groups. Anal. Chem. 2022, 94, 6011-6016.

    31. [31]

      Osawa, M.; Matsuda, N.; Yoshii, K.; Uchida, I. Charge transfer reso-nance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. J. Phys. Chem. 1994, 98, 12702-12707.

    32. [32]

      Lin, X. M.; Cui, Y.; Xu, Y. H.; Ren, B.; Tian, Z. Q. Surface-enhanced Raman spectroscopy: substrate-related issues. Anal. Bio. Chem. 2009, 394, 1729-1745.
       

    33. [33]

      Liu, G. K.; Hu, J.; Zheng, P. C.; Shen, G. L.; Jiang, J. H.; Yu, R. Q.; Cui, Y.; Ren, B. Laser-induced formation of metal-molecule-metal junctions between Au nanoparticles as probed by surface-enhanced raman spectro-scopy. J. Phys. Chem. C 2008, 112, 6499-6508.

    34. [34]

      Kudelski, A.; Pettinger, B. SERS on carbon chain segments: moni-toring locally surface chemistry. Chem. Phys. Lett. 2000, 321, 356-362.
       

    35. [35]

      Duan, S.; Ai, Y. -J.; Hu, W.; Luo, Y. Roles of plasmonic excitation and protonation on photoreactions of p-aminobenzenethiol on Ag nano-parti-cles. J. Phys. Chem. C 2014, 118, 6893-6902.
       

    36. [36]

      Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Physical Science 1973, 241, 20-22.
       

    37. [37]

      Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
       

    38. [38]

      Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
       

    39. [39]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approxi-mation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
       

    40. [40]

      Methfessel, M.; Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616-3621.
       

    41. [41]

      Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone inte-grations. Phys. Rev. B 1976, 13, 5188-5192.
       

    42. [42]

      Duan, S.; Fang, P. -P.; Fan, F. -R.; Broadwell, I.; Yang, F. -Z.; Wu, D. -Y.; Ren, B.; Amatore, C.; Luo, Y.; Xu, X.; Tian, Z. -Q. A density functional theory approach to mushroom-like platinum clusters on palladium-shell over Au core nanoparticles for high electrocatalytic activity. Phys. Chem. Chem. Phys. 2011, 13, 5441-5449.
       

  • 加载中
    1. [1]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    2. [2]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    3. [3]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    4. [4]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    5. [5]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    6. [6]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    7. [7]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    8. [8]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    9. [9]

      Linjing LiWenlai XuJianyong NingYaping ZhongChuyue ZhangJiane ZuoZhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243

    10. [10]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

    11. [11]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    12. [12]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2023.100335

    13. [13]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    14. [14]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    15. [15]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    16. [16]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    17. [17]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    18. [18]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    19. [19]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    20. [20]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

Metrics
  • PDF Downloads(2)
  • Abstract views(204)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return