Citation: Yu Zhang, Shan-Shan Liu, Bo Li, Hanqi You, Longxi Zhang, Zhenyi Zhang, Hong-Ying Zang, Qi Zheng, Weimin Xuan. Sulfonate-Functionalized Polyoxovanadate-Based Metal-Organic Polyhedra for Enhanced Proton Conduction via the Synergy of Linker and Metal Cluster Vertex[J]. Chinese Journal of Structural Chemistry, ;2022, 41(8): 220801. doi: 10.14102/j.cnki.0254-5861.2022-0127 shu

Sulfonate-Functionalized Polyoxovanadate-Based Metal-Organic Polyhedra for Enhanced Proton Conduction via the Synergy of Linker and Metal Cluster Vertex

Figures(4)

  • Metal-organic polyhedra (MOPs) have emerged as novel porous platforms for proton conduction, however, the concerted employment of both linker and metal cluster vertex is rarely applied for the fabrication of MOPs-based high conducting materials. Herein we report the synthesis of sulfonate-functionalized polyoxovanadate-based MOPs for enhanced proton conduction via the synergistic effect from linker and metal cluster node. MOPs 1 and 2 exhibit octahedral cage configuration constructed from {V5O9Cl} vertex and 5-sulfoisophthalate linker. Owing to the ordered packing of octahedral cages along three axes, 3D interpenetrated open channels that are lined with high-density sulfonates are thus formed within 2. Coupled with the proton-conductive {V5O9Cl} vertexs as well as protonated counterions, an extensive H-bonded network is therefore generated for facile proton transfer. 2 exhibits high proton conductivity of 3.02×10-2 S cm-1 at 65 ℃ under 90% RH, recording the highest value for MOPs pellet sample. This value is enhanced ~1 order of magnitude compared with that of carboxylate-functionalized analogue 3, clearly illustrating the advantage of combining linker and metal cluster node for enhanced proton conduction. This work will further promote the exploitation of high proton conductive MOPs-based materials by the synergy design strategy.
  • 加载中
    1. [1]

      Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.  doi: 10.1038/nature11475

    2. [2]

      Wang, S. Y.; Jiang, S. P. Prospects of fuel cell technologies. Natl. Sci. Rev. 2017, 4, 161-163.  doi: 10.1093/nsr/nwx032

    3. [3]

      Guo, Z. M.; Perez-Page, M.; Chen, J. N.; Ji, Z. Q.; Holmes, S. M. Recent advances in phosphoric acid-based membranes for high-temperature proton exchange membrane fuel cells. J. Energy Chem. 2021, 63, 393-429.  doi: 10.1016/j.jechem.2021.06.024

    4. [4]

      Zhang, H. W.; Shen, P. K. Recent development of polymer electrolyte membranes for fuel cells. Chem. Rev. 2012, 112, 2780-2832.  doi: 10.1021/cr200035s

    5. [5]

      Jiao, K.; Xuan, J.; Du, Q.; Bao, Z. M.; Xie, B.; Wang, B. W.; Zhao, Y.; Fan, L. H.; Wang, H. Z.; Hou, Z. J.; Huo, S.; Brandon, N. P.; Yin, Y.; Guiver, M. D. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361-369.  doi: 10.1038/s41586-021-03482-7

    6. [6]

      Chen, J. N.; Bailey, J. J.; Britnell, L.; Perez-Page, M.; Sahoo, M.; Zhang, Z.; Strudwick, A.; Hack, J.; Guo, Z. M.; Ji, Z. Q.; Martin, P.; Brett, D. J. L.; Shearing, P. R.; Holmes, S. M. The performance and durability of hightemperature proton exchange membrane fuel cells enhanced by single-layer graphene. Nano Energy 2022, 93, 106829.  doi: 10.1016/j.nanoen.2021.106829

    7. [7]

      Lim, D. W.; Kitagawa, H. Proton transport in metal-organic frameworks. Chem. Rev. 2020, 120, 8416-8467.  doi: 10.1021/acs.chemrev.9b00842

    8. [8]

      Liu, R. l.; Wang, D. Y.; Shi, J. R.; Li, G. Proton conductive metal sulfonate frameworks. Coord. Chem. Rev. 2021, 431, 213747.  doi: 10.1016/j.ccr.2020.213747

    9. [9]

      Xie, X. X.; Yang, Y. C.; Dou, B. H.; Li, Z. F.; Li, G. Proton conductive carboxylate-based metal-organic frameworks. Coord. Chem. Rev. 2020, 403, 213100.  doi: 10.1016/j.ccr.2019.213100

    10. [10]

      Wahiduzzaman, M.; Wang, S. J.; Schnee, J.; Vimont, A.; Ortiz, V.; Yot, P. G.; Retoux, R.; Daturi, M.; Lee, J. S.; Chang, J. S.; Serre, C.; Maurin, G.; Devautour-Vinot, S. A high proton conductive hydrogen-sulfate decorated titanium carboxylate metal-organic framework. ACS Sustain. Chem. Eng. 2019, 7, 5776-5783.  doi: 10.1021/acssuschemeng.8b05306

    11. [11]

      Xue, W. L.; Deng, W. H.; Chen, H.; Liu, R. H.; Taylor, J. M.; Li, Y. K.; Wang, L.; Deng, Y. H.; Li, W. H.; Wen, Y. Y.; Wang, G. E.; Wan, C. Q.; Xu, G. MOF-directed synthesis of crystalline ionic liquids with enhanced proton conduction. Angew. Chem. Int. Ed. 2021, 60, 1290-1297.  doi: 10.1002/anie.202010783

    12. [12]

      Lin, Y.; Li, W. H.; Wen, Y. Y.; Wang, G. E.; Ye, X. L.; Xu, G. Layer-by-layer growth of preferred-oriented MOF thin film on nanowire array for high-performance chemiresistive sensing. Angew. Chem. Int. Ed. 2021, 60, 25758-25761.  doi: 10.1002/anie.202111519

    13. [13]

      Guo, S. S.; Huang, L. L.; Ye, Y. X.; Liu, L. Z.; Yao, Z. Z.; Xiang, S. C.; Zhang, J. D.; Zhang, Z. J. Carbazole based anionic MOF for proton conductivity. Chin. J. Struct. Chem. 2021, 40, 55-60.

    14. [14]

      Hana, W.; Kwana, S. M.; Yeung, K. L. Zeolite applications in fuel cells: water management and proton conductivity. Chem. Eng. J. 2012, 187, 367-371.  doi: 10.1016/j.cej.2012.01.102

    15. [15]

      Xu, H.; Tao, S. S.; Jiang, D. L. Proton conduction in crystalline and porous covalent organic frameworks. Nat. Mater. 2016, 15, 722-726.  doi: 10.1038/nmat4611

    16. [16]

      Jin, E. Q.; Geng, K. Y.; Fu, S.; Yang, S.; Kanlayakan, N.; Addicoat, M. A.; Kungwan, N.; Geurs, J.; Xu, H.; Bonn, M.; Wang, H. I.; Smet, J.; Ko-walczyk, T.; Jiang, D. l. Exceptional electron conduction in two-dimensional covalent organic frameworks. Chem 2021, 7, 3309-3324.  doi: 10.1016/j.chempr.2021.08.015

    17. [17]

      Liu, L.; Yin, L. Y.; Cheng, D. M.; Zhao, S.; Zang, H. Y.; Zhang, N.; Zhu, G. S. Surface-mediated construction of an ultrathin free-standing covalent organic framework membrane for efficient proton conduction. Angew. Chem. Int. Ed. 2021, 60, 14875-14880.  doi: 10.1002/anie.202104106

    18. [18]

      Liu, G. M.; Ma, W. J.; Wang, Y.; Yang, Y.; Song, X. J. Computational insights into the excited state intramolecular proton transfer reactions in ortho-hydroxylated oxazolines. Chin. J. Struct. Chem. 2021, 40, 540-548.

    19. [19]

      Gosselin, A. J.; Rowland, C. A.; Bloch, E. D. Permanently microporous metal-organic polyhedra. Chem. Rev. 2020, 120, 8987-9014.  doi: 10.1021/acs.chemrev.9b00803

    20. [20]

      Fujita, D.; Ueda, Y.; Sato, S.; Mizuno, N.; Kumasaka, T.; Fujita, M. Self-assembly of tetravalent Goldberg polyhedra from 144 small components. Nature 2016, 540, 563-566.  doi: 10.1038/nature20771

    21. [21]

      Yamashina, M.; Tanaka, Y.; Pittelkow, M.; Nitschke, J. R.; Lavendomme, R.; Ronson, T. K. An antiaromatic-walled nanospace. Nature 2019, 574, 511-515.  doi: 10.1038/s41586-019-1661-x

    22. [22]

      Jiao, J. J.; Tan, C. X.; Li, Z. J.; Liu, Y.; Han, X.; Cui, Y. Design and assembly of chiral coordination cages for asymmetric sequential reactions. J. Am. Chem. Soc. 2018, 140, 2251-2259.  doi: 10.1021/jacs.7b11679

    23. [23]

      Dong, J. Q.; Liu, Y.; Cui, Y. Supramolecular chirality in metal-organic complexes. Acc. Chem. Res. 2021, 54, 194-206.  doi: 10.1021/acs.accounts.0c00604

    24. [24]

      Wei, J. W.; Zhao, L.; He, C.; Zheng, S. J.; Reek, J. N. H.; Duan, C. Y. Metal-organic capsules with NADH mimics as switchable selectivity regulators for photocatalytic transfer hydrogenation. J. Am. Chem. Soc. 2019, 141, 12707-12716.  doi: 10.1021/jacs.9b05351

    25. [25]

      Li, Y. G.; Dong, J. Q.; Gong, W.; Tang, X. H.; Liu, Y. H.; Cui, Y.; Liu, Y. Artificial biomolecular channels: enantioselective transmembrane trans-port of amino acids mediated by homochiral zirconium metal-organic cages. J. Am. Chem. Soc. 2021, 143, 20939-20951.  doi: 10.1021/jacs.1c09992

    26. [26]

      Guo, T. T.; Cheng, D. M.; Yang, J.; Xu, X. X.; Ma, J. F. Calix[4]resorcinarene-based [Co16] coordination cages mediated by isomorphous auxiliary ligands for enhanced proton conduction. Chem. Commun. 2019, 55, 6277-6280.  doi: 10.1039/C9CC01828J

    27. [27]

      Samanta, D.; Mukherjee, P. S. Component selection in the selfassembly of palladium(II) nanocages and cage-to-cage transformations. Chem. Eur. J. 2014, 20, 12483-12492.  doi: 10.1002/chem.201402553

    28. [28]

      Saha, R.; Samanta, D.; Bhattacharyya, A. J.; Mukherjee, P. S. Stepwise construction of self-assembled heterometallic cages showing high proton conductivity. Chem. Eur. J. 2017, 23, 8980-8986.  doi: 10.1002/chem.201701596

    29. [29]

      Zhai, Q. G.; Mao, C. Y.; Zhao, X.; Lin, Q. P.; Bu, F.; Chen, X. T.; Bu, X. H.; Feng, P. Y. Cooperative crystallization of heterometallic indium-chromium metal-organic polyhedra and their fast proton conductivity. Angew. Chem. Int. Ed. 2015, 54, 7886-7890.  doi: 10.1002/anie.201503095

    30. [30]

      Xing, W. H.; Li, H. Y.; Dong, X. Y.; Zang, S. Q. Robust multifunctional Zr-based metal-organic polyhedra for high proton conductivity and selective CO2 capture. J. Mater. Chem. A 2018, 6, 7724-7730.  doi: 10.1039/C8TA00858B

    31. [31]

      Liu, S. S.; Liu, Q. Q.; Huang, S. Z.; Zhang, C.; Dong, X. Y.; Zang, S. Q. Sulfonic and phosphonic porous solids as proton conductors. Coord. Chem. Rev. 2022, 451, 214241.  doi: 10.1016/j.ccr.2021.214241

    32. [32]

      Sun, S. H.; Zhang, Q. C.; Ye, X. L.; Kashi, C. E.; Li, W. H.; Wang, G. E.; Xu, G. High-humidity sensor of a new trinuclear Ti3-oxo cluster. Chin. J. Struct. Chem. 2022, 41, 2203070-2203076.

    33. [33]

      Li, S. J.; Zhao, Y.; Knoll, S.; Liu, R.; Li, G.; Peng, Q. P.; Qiu, P. T.; He, D. F.; Streb, C.; Chen, X. N. High proton-conductivity in covalently linked polyoxometalate-organoboronic acid-polymers. Angew. Chem. Int. Ed. 2021, 60, 16953-16957.  doi: 10.1002/anie.202104886

    34. [34]

      Sun, X. W.; Liu, S. M.; Zhang, S.; Dang, T. Y.; Tian, H. R.; Lu, Y.; Liu, S. X. High proton conductivity achieved by the self-assembly of POM-based acid-base adduct in SBA-15 over a wide range from -40 to 85 ℃. ACS Appl. Energy Mater. 2020, 3, 1242-1248.  doi: 10.1021/acsaem.9b02381

    35. [35]

      Misra, A.; Kozma, K.; Streb, C.; Nyman, M. Beyond charge balance: counter-cations in polyoxometalate chemistry. Angew. Chem. Int. Ed. 2020, 59, 596-612.  doi: 10.1002/anie.201905600

    36. [36]

      Liu, Y. W.; Liu, S. M.; Lai, X. Y.; Miao, J.; He, D. F.; Li, N.; Luo, F.; Shi, Z.; Liu, S. X. Polyoxometalate-modified sponge-like graphene oxide monolith with high proton-conducting performance. Adv. Funct. Mater. 2015, 25, 4480-4485.  doi: 10.1002/adfm.201501912

    37. [37]

      Buru, C. T.; Farha, O. K. Strategies for incorporating catalytically active polyoxometalates in metal-organic frameworks for organic transformations. ACS Appl. Mater. Interfaces 2020, 12, 5345-5360.  doi: 10.1021/acsami.9b19785

    38. [38]

      Ma, H. P.; Liu, B. L.; Li, B.; Zhang, L. M.; Li, Y. G.; Tan, H. Q.; Zang, H. Y.; Zhu, G. S. Cationic covalent organic frameworks: a simple platform of anionic exchange for porosity tuning and proton conduction. J. Am. Chem. Soc. 2016, 138, 5897-5903.  doi: 10.1021/jacs.5b13490

    39. [39]

      Gan, H. M.; Xu, N.; Qin, C.; Sun, C. Y.; Wang, X. L.; Su, Z. M. Equi-size nesting of Platonic and Archimedean metal-organic polyhedra into a twin capsid. Nat. Commun. 2020, 11, 4103.  doi: 10.1038/s41467-020-17989-6

    40. [40]

      Li, X. X.; Zhao, D.; Zheng, S. T. Recent advances in POM-organic frameworks and POM-organic polyhedra. Coord. Chem. Rev. 2019, 397, 220-240.  doi: 10.1016/j.ccr.2019.07.005

    41. [41]

      Zhang, Y. T.; Gan, H. M.; Qin, C.; Wang, X. L.; Su, Z. M.; Zaworotko, M. J. Self-assembly of goldberg polyhedra from a concave [WV5O11(RCO2)5(SO4)]3- building block with 5-fold symmetry. J. Am. Chem. Soc. 2018, 140, 17365-17368.  doi: 10.1021/jacs.8b10866

    42. [42]

      Zheng, S. T.; Zhang, J.; Li, X. X.; Fang, W. H.; Yang, G. Y. Cubic polyoxometalate-organic molecular cage. J. Am. Chem. Soc. 2010, 132, 15102-15103.  doi: 10.1021/ja105986b

    43. [43]

      Chang, Q.; Meng, X. Y.; Ruan, W. J.; Feng, Y. Q.; Li, R.; Zhu, J. Y.; Ding, Y.; Lv, H. J.; Wang, W.; Chen, G. Y.; Fang, X. K. Metal-organic cages with {SiW9Ni4} polyoxotungstate nodes. Angew. Chem. Int. Ed. 2022, 134, e202117637.

    44. [44]

      Gong, Y. R.; Qin, C.; Zhang, Y. T.; Sun, C. Y.; Pan, Q. H.; Wang, X. L.; Su, Z. M. Face-directed assembly of molecular cubes: in situ substitution of a predetermined concave cluster. Angew. Chem. Int. Ed. 2020, 59, 22034-22038.  doi: 10.1002/anie.202010824

    45. [45]

      Gong, Y. R.; Zhang, Y. T.; Qin, C.; Sun, C. Y.; Wang, X. L.; Su, Z. M. Bottom-up construction and reversible structural transformation of supramolecular isomers based on large truncated tetrahedra. Angew. Chem. Int. Ed. 2019, 58, 780-784.  doi: 10.1002/anie.201811027

    46. [46]

      Zhang, Z. J.; Wojtas, L.; Zaworotko, M. J. Organic-inorganic hybrid polyhedra that can serve as supermolecular building blocks. Chem. Sci. 2014, 5, 927-931.  doi: 10.1039/C3SC53099J

    47. [47]

      Zhang, Y. T.; Wang, X. L.; Li, S. B.; Song, B. Q.; Shao, K. Z.; Su, Z. M. Ligand-directed assembly of polyoxovanadate-based metal-organic polyhedra. Inorg. Chem. 2016, 55, 8770-8775.  doi: 10.1021/acs.inorgchem.6b01338

    48. [48]

      Liu, X.; Zhou, J.; Amarante, T. R.; Paz, F. A. A.; Fu, L. S. Vanadoborates: cluster-based architectures, preparation and properties. Dalton Trans. 2021, 50, 1550-1568.  doi: 10.1039/D0DT03820B

    49. [49]

      Chen, H.; Yu, Z. B.; Bacsik, Z.; Zhao, H. S.; Yao, Q. X.; Sun, J. L. Construction of mesoporous frameworks with vanadoborate clusters. Angew. Chem. Int. Ed. 2014, 53, 3608-3611.  doi: 10.1002/anie.201311122

    50. [50]

      Wu, Y. L.; Li, X. X.; Qi, Y. J.; Yu, H.; Jin, L.; Zheng, S. T. {Nb288O768(OH)48(CO3)12}: a macromolecular polyoxometalate with close to 300 niobium atoms. Angew. Chem. Int. Ed. 2018, 57, 8572-8576.  doi: 10.1002/anie.201804088

    51. [51]

      Jin, L.; Zhu, Z. K.; Wu, Y. L.; Qi, Y. J.; Li, X. X.; Zheng, S. T. Record high-nuclearity polyoxoniobates: discrete nanoclusters {Nb114}, {Nb81}, and {Nb52}, and extended frameworks based on {Cu3Nb78} and {Cu4Nb78}. Angew. Chem. Int. Ed. 2017, 56, 16288-16292.  doi: 10.1002/anie.201709565

    52. [52]

      Gong, Y. R.; Su, Z. M.; Wang, X. L. A polyoxometalate-based metal-organic polyhedron constructed from a {V5O9Cl} building unit with rhombicuboctahedral geometry. Acta Crystallogr. C Struct. Chem. 2018, 74, 1243-1247.  doi: 10.1107/S2053229618010689

    53. [53]

      Spek, A. L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. C Struct. Chem. 2015, 71, 9-18.  doi: 10.1107/S2053229614024929

    54. [54]

      Liu, L.; Yin, L. Y.; Cheng, D. M.; Zhao, S.; Zang, H. Y.; Zhang, N.; Zhu, G. S. Surface-mediated construction of an ultrathin free-standing covalent organic framework membrane for efficient proton conduction. Angew. Chem. Int. Ed. 2021, 60, 14875-14880.  doi: 10.1002/anie.202104106

    55. [55]

      Lin, J. M.; Li, N.; Yang, S. P.; Jia, M. J.; Liu, J.; Li, X. M.; An, L.; Tian, Q. W.; Dong, L. Z.; Lan, Y. Q. Self-assembly of giant Mo240 hollow opening dodecahedra. J. Am. Chem. Soc. 2020, 142, 13982-13988.  doi: 10.1021/jacs.0c06582

    56. [56]

      Kang, D. W.; Kang, M. J.; Hong, C. S. Post-synthetic modification of porous materials: superprotonic conductivities and membrane applications in fuel cells. J. Mater. Chem. A 2020, 8, 7474-7494.

    57. [57]

      Lee, J.; Lim, D. W.; Dekura, S.; Kitagawa, H.; Choe, W. MOP x MOF: collaborative combination of metal-organic polyhedra and metal-organic framework for proton conductivity. ACS Appl. Mater. Interfaces 2019, 11, 12639-12646.

    58. [58]

      Chai, S. C.; Xu, F. R.; Zhang, R. C.; Wang, X. L.; Zhai, L.; Li, X.; Qian, H. J.; Wu, L. X.; Li, H. L. Hybrid liquid-crystalline electrolytes with high-temperature-stable channels for anhydrous proton conduction. J. Am. Chem. Soc. 2021, 143, 21433-21442.

    59. [59]

      Zhu, M. H.; Iwano, T.; Tan, M. J.; Akutsu, D.; Uchida, S.; Chen, G. Y.; Fang, X. K. Macrocyclic polyoxometalates: selective polyanion binding and ultrahigh proton conduction. Angew. Chem. Int. Ed. 2022, 61, e202200666.

    60. [60]

      Liu, W. J.; Dong, L. Z.; Li, R. H.; Chen, Y. J.; Sun, S. N.; Li, S. L.; Lan, Y. Q. Different protonic species affecting proton conductivity in hollow spherelike polyoxometalates. ACS Appl. Mater. Interfaces 2019, 11, 7030-7036.

    61. [61]

      Zang, H. Y.; Chen, J. J.; Long, D. L.; Cronin, L.; Miras, H. N. Assembly of thiometalate-based {Mo16} and {Mo36} composite clusters combining [Mo2O2S2]2+ cations and selenite anions. Adv. Mater. 2013, 25, 6245-6249.

    62. [62]

      Zhang, F. M.; Dong, L. Z.; Qin, J. S.; Guan, W.; Liu, J.; Li, S. L.; Lu, M.; Lan, Y. Q.; Su, Z. M.; Zhou, H. C. Effect of imidazole arrangements on proton-conductivity in metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 6183-6189.

    63. [63]

      Shigematsu, A.; Yamada, T.; Kitagawa, H. Wide control of proton conductivity in porous coordination polymers. J. Am. Chem. Soc. 2011, 133, 2034-2036.

    64. [64]

      Lai, X. Y.; Liu, Y. W.; Yang, G. C.; Liu, S. M.; Shi, Z.; Lu, Y.; Luo, F.; Liu, S. X. Controllable proton-conducting pathways via situating polyoxometalates in targeting pores of a metal-organic framework. J. Mater. Chem. A 2017, 5, 9611-9617.

    65. [65]

      Liu, J. C.; Han, Q.; Chen, L. J.; Zhao, J. W.; Streb, C.; Song, Y. F. Aggregation of giant cerium-bismuth tungstate clusters into a 3D porous framework with high proton conductivity. Angew. Chem. Int. Ed. 2018, 57, 8416-8420.

  • 加载中
    1. [1]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    2. [2]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    3. [3]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    4. [4]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    5. [5]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    6. [6]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    7. [7]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    8. [8]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    9. [9]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    10. [10]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    11. [11]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    12. [12]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    13. [13]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    16. [16]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    17. [17]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    18. [18]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    19. [19]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    20. [20]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

Metrics
  • PDF Downloads(3)
  • Abstract views(182)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return