Citation: Huiping Sun, Zuoxi Li, Yu Gu, Chunxian Guo. A Review on the Progress of Metal-Organic Frameworks in Electrochemiluminescence Sensors[J]. Chinese Journal of Structural Chemistry, ;2022, 41(11): 221101. doi: 10.14102/j.cnki.0254-5861.2022-0126 shu

A Review on the Progress of Metal-Organic Frameworks in Electrochemiluminescence Sensors





  • Author Bio: Huiping Sun received her Ph.D. in analytical chemistry from Northwest University in 2021. Currently, she is a lecturer in the Institute of Materials Science and Devices, Suzhou University of Science and Technology, China. Her research interests are electrogenerated chemiluminescence biosensor and functional materials
    Zuoxi Li is a professor in Suzhou University of Science and Technology. He obtained his bachelor's degree and Ph.D. from Nankai University in 2004 and 2009, respectively. His research work is closely related to the application of MOFs and MOFs-derived nanomaterials in adsorption and separation, supercapacitor, rechargeable battery, and electrocatalysis
    Yu Gu is an associate professor in Suzhou University of Science and Technology. She got her Ph.D. from China Pharmaceutical University in 2016, and continued her postdoctoral research in College of Chemistry and Chemical Engineering, Nanjing University from 2016 to 2018. Her research interests include the development bioanalytical chemistry, including nano-biosensors, bioimaging, liquid biopsy and early screening for illnesses
    Chunxian Guo is a professor in the School of Materials Science and Engineering as well as Director of the Jiangsu Laboratory for Biochemical Sensing and Biochip, Suzhou University of Science and Technology. He received his Ph.D. in Chemical and Biomedical Engineering from Nanyang Technological University, Singapore in 2011. His research focuses on the surface and interface engineering of functional materials and the development of high-performance biosensors for early diagnosis of significant diseases
  • Corresponding author: Huiping Sun, huipingsun@usts.edu.cn
  • Received Date: 17 May 2022
    Accepted Date: 11 July 2022
    Available Online: 25 July 2022

Figures(8)

  • Electrochemiluminescence (ECL) is a powerful technology that is the triple point of chemical, electronic, and optical technologies. The ECL-based sensors attract enormous attention due to the unifying of the advantages of electrochemical and optical sensors. The development of ultrasensitive, rapid, highly specific, and cost-effective ECL sensors for detecting substances with human health and life is critical. Metal-organic frameworks (MOFs) is a kind of molecular crystalline material regarded as a promising candidate for application in ECL sensors after its great improvement because of the improved MOFs with particular merits such as large surface area, tunable pore scale, structural diversity, superior conductivity, water stability, low toxicity, and good biocompatibility. In this review, we emphasize discussing the applications of MOFs for ECL sensing detection of varying targets that are related to human health and life, such as metal ions, small molecules, nucleic acids, proteins, bacteria, and viruses. Then, the relationship between ECL performance and MOFs characters is sprinkled in the discussion of the representative example. Finally, we provide the potential opportunities and challenges faced by MOFs in the realm of ECL sensors, as well as the future perspectives.
  • 加载中
    1. [1]

      Richter, M. M. Electrochemiluminescence (ECL). Chem. Rev. 2004, 104, 3003-3036.  doi: 10.1021/cr020373d

    2. [2]

      Miao, W. Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev. 2008, 108, 2506-2553.  doi: 10.1021/cr068083a

    3. [3]

      Qi, H.; Zhang, C. Electrogenerated chemiluminescence biosensing. Anal. Chem. 2020, 92, 524-534.  doi: 10.1021/acs.analchem.9b03425

    4. [4]

      Zhao, W.; Chen, H. Y.; Xu, J. J. Electrogenerated chemiluminescence detection of single entities. Chem. Sci. 2021, 12, 5720-5736.  doi: 10.1039/D0SC07085H

    5. [5]

      Gao, H.; Han, W.; Qi, H.; Gao, Q.; Zhang, C. Electrochemiluminescence imaging for the morphological and quantitative analysis of living cells under external stimulation. Anal. Chem. 2020, 92, 8278-8284.  doi: 10.1021/acs.analchem.0c00528

    6. [6]

      Miao, W.; Bard, A. J. Electrogenerated chemiluminescence. 80. C-reactive protein determination at high amplification with [Ru(bpy)3]2+-containing microspheres. Anal. Chem. 2004, 76, 7109-7113.  doi: 10.1021/ac048782s

    7. [7]

      Wang, P. L.; Xie, L. H.; Joseph, E. A.; Li, J. R.; Su, X. O.; Zhou, H. C. Metal-organic frameworks for food safety. Chem. Rev. 2019, 119, 10638-10690.  doi: 10.1021/acs.chemrev.9b00257

    8. [8]

      Zhang, J. P.; Zhou, H. L.; Zhou, D. D.; Liao, P. Q.; Chen, X. M. Controlling flexibility of metal-organic frameworks. Natl. Sci. Rev. 2018, 5, 907-919.  doi: 10.1093/nsr/nwx127

    9. [9]

      Pang, J.; Yuan, S.; Qin, J.; Liu, C.; Lollar, C.; Wu, M.; Yuan, D.; Zhou, H. -C.; Hong, M. Control the structure of Zr-tetracarboxylate frameworks through steric tuning. J. Am. Chem. Soc. 2017, 139, 16939-16945.  doi: 10.1021/jacs.7b09973

    10. [10]

      Bernard, F. H.; Richard, R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 1989, 111, 5962-5964.  doi: 10.1021/ja00197a079

    11. [11]

      Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O'Keeffe, M.; Kim, J.; Yaghi, O. M. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424-428.  doi: 10.1126/science.1192160

    12. [12]

      Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.  doi: 10.1126/science.1230444

    13. [13]

      Zhou, H. -C. J.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415-5418.  doi: 10.1039/C4CS90059F

    14. [14]

      Cai, P.; Xu, M.; Meng, S. S.; Lin, Z.; Yan, T.; Drake, H. F.; Zhang, P.; Pang, J.; Gu, Z. Y.; Zhou, H. C. Precise spatial-designed metal-organic-framework nanosheets for efficient energy transfer and photocatalysis. Angew. Chem. Int. Ed. 2021, 60, 27258-27263.  doi: 10.1002/anie.202111594

    15. [15]

      Pang, J.; Yuan, S.; Qin, J. -S.; Lollar, C. T.; Huang, N.; Li, J.; Wang, Q.; Wu, M.; Yuan, D.; Hong, M.; Zhou, H. C. Tuning the ionicity of stable metalorganic frameworks through ionic linker installation. J. Am. Chem. Soc. 2019, 141, 3129-3136.  doi: 10.1021/jacs.8b12530

    16. [16]

      Pang, J.; Di, Z.; Qin, J. S.; Yuan, S.; Lollar, C. T.; Li, J.; Zhang, P.; Wu, M.; Yuan, D.; Hong, M.; Zhou, H. C. Precisely embedding active sites into a mesoporous Zr-framework through linker installation for high-efficiency photocatalysis. J. Am. Chem. Soc. 2020, 142, 15020-15026.  doi: 10.1021/jacs.0c05758

    17. [17]

      Pang, J.; Yuan, S.; Qin, J.; Wu, M.; Lollar, C. T.; Li, J.; Huang, N.; Li, B.; Zhang, P.; Zhou, H. C. Enhancing pore-environment complexity using a trapezoidal linker: toward stepwise assembly of multivariate quinary metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 12328-12332.  doi: 10.1021/jacs.8b07411

    18. [18]

      Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477-1504.  doi: 10.1039/b802426j

    19. [19]

      Li, G. P.; Li, Z. Z.; Xie, H. F.; Fu, Y. L.; Wang, Y. Y. Efficient C-2 hydrocarbons and CO2 adsorption and separation in a multi-site functionalized MOF. Chin. J. Struct. Chem. 2021, 40, 1047-1054.

    20. [20]

      Pang, J.; Jiang, F.; Wu, M.; Liu, C.; Su, K.; Lu, W.; Yuan, D.; Hong, M. A porous metal-organic framework with ultrahigh acetylene uptake capacity under ambient conditions. Nat. Commun. 2015, 6, 7575.  doi: 10.1038/ncomms8575

    21. [21]

      Zhang, X.; Chen, A.; Zhong, M.; Zhang, Z.; Zhang, X.; Zhou, Z.; Bu, X. Metal-organic frameworks (MOFs) and MOF-derived materials for energy storage and conversion. Electrochem. Energy Rev. 2019, 2, 29-104.  doi: 10.1007/s41918-018-0024-x

    22. [22]

      Wu, X. M.; Liu, M. M.; Guo, H. X. A.; Ying, S. M.; Chen, Z. X. Polyoxovanadate-based MOFs microsphere constructed from 3-D discrete nano-sheets as supercapacitor. Chin. J. Struct. Chem. 2021, 40, 994-998.

    23. [23]

      Xue, H.; Li, T.; Yin, Q.; Huang, G.; Liu, T. F. A Sulfonate-based metalorganic framework for the transformation of CO2 and epoxides into cyclic carbonates. Chin. J. Struct. Chem. 2020, 39, 2027-2032.

    24. [24]

      Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232-1268.  doi: 10.1021/cr200256v

    25. [25]

      Ma, L.; Abney, C.; Lin, W. Enantioselective catalysis with homochiral metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1248-1256.  doi: 10.1039/b807083k

    26. [26]

      Sikdar+, N.; Junqueira+, J. R. C.; Dieckhöfer, S.; Quast, T.; Braun, M.; Song, Y.; Aiyappa, H. B.; Seisel, S.; Weidner, J.; Öhl, D.; Andronescu, C.; Schuhmann, W. A metal-organic framework derived CuxOyCz catalyst for electrochemical CO2 reduction and impact of local pH change. Angew. Chem. Int. Ed. 2021, 60, 23427-23434.  doi: 10.1002/anie.202108313

    27. [27]

      Liu, M.; Su, H.; Cheng, W.; Yu, F.; Li, Y.; Zhou, W.; Zhang, H.; Sun, X.; Zhang, X.; Wei, S.; Liu Q. Synergetic dual-ion centers boosting metal organic framework alloy catalysts toward efficient two electron oxygen reduction. Small 2022, 18, 2202248.  doi: 10.1002/smll.202202248

    28. [28]

      Basaleh, A. S.; Sheta, S. M. Manganese metal-organic framework: chemical stability, photoluminescence studies, and biosensing application. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1726-1737.  doi: 10.1007/s10904-021-01888-4

    29. [29]

      Aboagye, N. K.; Hu, J. S.; Li, J. X. Two coordination polymers with high selectivity for sensing iron(III) constructed from bifunctional ligand. Chin. J. Struct. Chem. 2021, 40, 465-472.

    30. [30]

      Shu, Y.; Ye, Q.; Dai, T.; Xu, Q.; Hu, X. Encapsulation of luminescent guests to construct luminescent metal-organic frameworks for chemical sensing. ACS Sens. 2021, 6, 641-658.  doi: 10.1021/acssensors.0c02562

    31. [31]

      Afravi, Z.; Nobakht, V.; Pourreza, N.; Ghomi, M.; Trzybiński, D.; Woźniak, K. Design of a sensitive fluorescent Zn-based metal-organic framework sensor for cimetidine monitoring in biological and pharmaceutical samples. ACS Omega. 2022, 7, 22221-22231.  doi: 10.1021/acsomega.2c00874

    32. [32]

      Wang, X. T.; Wei, W.; Zhang, K.; Du, S. W. Detection of diethyl ether by a europium MOF through fluorescence enhancement. Chin. J. Struct. Chem. 2021, 40, 369-375.

    33. [33]

      Kumar, S.; Pramudya, Y.; Müller, K.; Chandresh, A.; Dehm, S.; Heidrich, S.; Fediai, A.; Parmar, D.; Perera, D.; Rommel, M.; Heinke, L.; Wenzel, W.; Wöll, C.; Krupke, R. Sensing molecules with metal-organic framework functionalized graphene transistors. Adv. Mater. 2021, 33, 2103316.  doi: 10.1002/adma.202103316

    34. [34]

      Wu, K.; Yu, Y.; Hou, Z.; Guan, X.; Zhao, H.; Liu, S.; Yang, X.; Fei, T.; Zhang, T. A humidity sensor based on ionic liquid modified metal organic frameworks for low humidity detection. Sensor. Actuat. B-Chem. 2022, 355, 131136.  doi: 10.1016/j.snb.2021.131136

    35. [35]

      Ahmadi, A.; Khoshfetrat, S. M.; Kabiri, S.; Dorraji, P. S.; Larijani, B.; Omidfar, K. Electrochemiluminescence paper-based screen-printed electrode for HbA1c detection using two-dimensional zirconium metal-organic framework/Fe3O4 nanosheet composites decorated with Au nanoclusters. Microchim. Acta 2021, 188, 296.  doi: 10.1007/s00604-021-04959-y

    36. [36]

      Bai, W.; Cui, A.; Liu, M.; Qiao, X.; Li, Y.; Wang, T. Signal-off electrogenerated chemiluminescence biosensing platform based on the quenching effect between ferrocene and Ru(bpy)32+-functionalized metalorganic frameworks for the detection of methylated RNA. Anal. Chem. 2019, 91, 11840-11847.  doi: 10.1021/acs.analchem.9b02569

    37. [37]

      Gu, W.; Wang, X.; Wen, J.; Cao, S.; Jiao, L.; Wu, Y.; Wei, X.; Zheng, L.; Hu, L.; Zhang, L.; Zhu, C. Modulating oxygen reduction behaviors on nickel single-atom catalysts to probe the electrochemiluminescence mechanism at the atomic level. Anal. Chem. 2021, 93, 8663-8670.  doi: 10.1021/acs.analchem.1c01835

    38. [38]

      Wang, Z.; Jiang, X.; Yuan, R.; Chai, Y. N-(aminobutyl)-N-(ethylisoluminol) functionalized Fe-based metal-organic frameworks with intrinsic mimic peroxidase activity for sensitive electrochemiluminescence mucin1 determination. Biosens. Bioelectron. 2018, 121, 250-256.  doi: 10.1016/j.bios.2018.09.022

    39. [39]

      Zhou, J.; Li, Y.; Wang, W.; Tan, X.; Lu, Z.; Han, H. Metal-organic frameworks-based sensitive electrochemiluminescence biosensing. Biosens. Bioelectron. 2020, 164, 112332.  doi: 10.1016/j.bios.2020.112332

    40. [40]

      Huang, W.; Hu, G. B.; Yao, L. Y.; Yang, Y.; Liang, W. B.; Yuan, R.; Xiao, D. R. Matrix coordination-induced electrochemiluminescence enhancement of tetraphenylethylene-based hafnium metal-organic framework: an electrochemiluminescence chromophore for ultrasensitive electrochemiluminescence sensor construction. Anal. Chem. 2020, 92, 3380-3387.  doi: 10.1021/acs.analchem.9b05444

    41. [41]

      Wang, X.; Xiao, S.; Yang, C.; Hu, C.; Wang, X.; Zhen, S.; Huang, C.; Li, Y. Zinc-metal organic frameworks: a coreactant-free electrochemi-luminescence luminophore for ratiometric detection of miRNA-133a. Anal. Chem. 2021, 93, 14178-14186.  doi: 10.1021/acs.analchem.1c02881

    42. [42]

      Yang, X.; Yu, Y. Q.; Peng, L. Z.; Lei, Y. M.; Chai, Y. Q.; Yuan, R.; Zhuo, Y. Strong electrochemiluminescence from MOF accelerator enriched quantum dots for enhanced sensing of trace cTnI. Anal. Chem. 2018, 90, 3995-4002.  doi: 10.1021/acs.analchem.7b05137

    43. [43]

      Li, F.; Li, R.; Feng, Y.; Gong, T.; Zhang, M.; Wang, L.; Meng, T.; Jia, H.; Wang, H.; Zhang, Y. Facile synthesis of Au-embedded porous carbon from metal-organic frameworks and for sensitive detection of acetaminophen in pharmaceutical products. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 95, 78-85.  doi: 10.1016/j.msec.2018.10.074

    44. [44]

      Jin, Z.; Zhu, X.; Wang, N.; Li, Y.; Ju, H.; Lei, J. Electroactive metalorganic frameworks as emitters for self-enhanced electrochemiluminescence in aqueous medium. Angew. Chem. Int. Ed. 2020, 59, 10446-10450.  doi: 10.1002/anie.202002713

    45. [45]

      Zhu, D.; Zhang, Y.; Bao, S.; Wang, N.; Yu, S.; Luo, R.; Ma, J.; Ju, H.; Lei, J. Dual intrareticular oxidation of mixed-ligand metal-organic frameworks for stepwise electrochemiluminescence. J. Am. Chem. Soc. 2021, 143, 3049-3053.  doi: 10.1021/jacs.1c00001

    46. [46]

      Zaporski, J.; Jamison, M.; Zhang, L.; Gu, B.; Yang, Z. Mercury methylation potential in a sand dune on Lake Michigan's eastern shoreline. Sci. Total Environ. 2020, 729, 138879.  doi: 10.1016/j.scitotenv.2020.138879

    47. [47]

      Lin, X.; Luo, F.; Zheng, L.; Gao, G.; Chi, Y. Fast, sensitive, and selective ion-triggered disassembly and release based on tris(bipyridine)-ruthenium(II)-functionalized metal-organic frameworks. Anal. Chem. 2015, 87, 4864-4870.  doi: 10.1021/acs.analchem.5b00391

    48. [48]

      Ma, Y.; Yu, Y.; Mu, X.; Yu, C.; Zhou, Y.; Chen, J.; Zheng, S.; He, J. Enzyme-induced multicolor colorimetric and electrochemiluminescence sensor with a smartphone for visual and selective detection of Hg2+. J. Hazard. Mater. 2021, 415, 125538.  doi: 10.1016/j.jhazmat.2021.125538

    49. [49]

      Qin, D.; Xu, R.; Shen, H.; Mamat, X.; Wang, L.; Gao, S.; Wang, Y.; Yalikun, N.; Wagberg, T.; Zhang, S.; Yuan, Q.; Li, Y.; Hu, G. Protic saltbased nitrogen-doped mesoporous carbon for simultaneous electrochemical detection of Cd(II) and Pb(II). RSC Adv. 2017, 7, 36929-36934.  doi: 10.1039/C7RA04806H

    50. [50]

      Shan, X.; Pan, T.; Pan, Y.; Wang, W.; Chen, X.; Shan, X.; Chen, Z. Highly sensitive and selective detection of Pb(II) by NH2-SiO2/Ru(bpy)32+-UiO66 based solid-state ECL sensor. Electroanalysis 2019, 32, 462-469.

    51. [51]

      Feng, D.; Li, P.; Tan, X.; Wu, Y.; Wei, F.; Du, F.; Ai, C.; Luo, Y.; Chen, Q.; Han, H. Electrochemiluminescence aptasensor for multiple determination of Hg2+ and Pb2+ ions by using the MIL-53(Al)@CdTe-PEI modified electrode. Anal. Chim. Acta 2020, 1100, 232-239.  doi: 10.1016/j.aca.2019.11.069

    52. [52]

      Ma, H.; Li, X.; Yan, T.; Li, Y.; Liu, H.; Zhang, Y.; Wu, D.; Du, B.; Wei, Q. Electrogenerated chemiluminescence behavior of Au nanoparticleshybridized Pb(II) metal-organic framework and its application in selective sensing hexavalent chromium. Sci. Rep. 2016, 6, 22059.  doi: 10.1038/srep22059

    53. [53]

      Hu, D.; Zhan, T.; Guo, Z.; Wang, S.; Hu, Y. Electrosynthesized metalorganic framework: a dual-modality readout platform for Cu(II), coenzyme A and histone acetyltransferase analysis. Sensor. Actuat. B-Chem. 2021, 327, 128896.  doi: 10.1016/j.snb.2020.128896

    54. [54]

      Tang, T.; Hao, Z.; Yang, H.; Nie, F.; Zhang, W. A highly enhanced electrochemiluminescence system based on a novel Cu-MOF and its application in the determination of ferrous ion. J. Electroanal. Chem. 2020, 856, 113498.  doi: 10.1016/j.jelechem.2019.113498

    55. [55]

      Ma, C.; Cao, Y.; Gou, X.; Zhu, J. J. Recent progress in electrochemiluminescence sensing and imaging. Anal. Chem. 2020, 92, 431-454.  doi: 10.1021/acs.analchem.9b04947

    56. [56]

      Fu, X.; Yang, Y.; Wang, N.; Chen, S. The electrochemiluminescence resonance energy transfer between Fe-MIL-88 metal-organic framework and 3, 4, 9, 10-perylenetetracar-boxylic acid for dopamine sensing. Sensor. Actuat. B-Chem. 2017, 250, 584-590.  doi: 10.1016/j.snb.2017.04.054

    57. [57]

      Li, Y.; Yang, L.; Peng, Z.; Huang, C.; Li, Y. Encapsulating a ruthenium(II) complex into metal organic frameworks to engender high sensitivity for dopamine electrochemiluminescence detection. Anal. Methods 2018, 10, 1560-1564.  doi: 10.1039/C7AY02903A

    58. [58]

      Wang, Y. W.; Nan, L. J.; Jiang, Y. R.; Fan, M. F.; Chen, J.; Yuan, P. X.; Wang, A. J.; Feng, J. J. A robust and efficient aqueous electrochemiluminescence emitter constructed by sulfonate porphyrin-based metalorganic frameworks and its application in ascorbic acid detection. Analyst 2020, 145, 2758-2766.  doi: 10.1039/C9AN02442E

    59. [59]

      Tao, X. L.; Pan, M. C.; Yang, X.; Yuan, R.; Zhuo, Y. CDs assembled metal-organic framework: exogenous coreactant-free biosensing platform with pore confinement-enhanced electrochemiluminescence. Chin. Chem. Lett. 2022.

    60. [60]

      Sies, H.; Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363-383.  doi: 10.1038/s41580-020-0230-3

    61. [61]

      Tian, H.; Tan, B.; Dang, X.; Zhao, H. Enhanced electrochemiluminescence detection for hydrogen peroxide using peroxidase-mimetic Fe/N-doped porous carbon. J. Electrochem. Soc. 2019, 166, B1594-B1601.  doi: 10.1149/2.1021915jes

    62. [62]

      Jian, X.; Xu, J.; Wang, Y.; Zhao, C.; Gao, Z.; Song, Y. Y. Deployment of MIL-88B(Fe)/TiO2 nanotube-supported Ti wires as reusable electrochemiluminescence microelectrodes for noninvasive sensing of H2O2 from single cancer cells. Anal. Chem. 2021, 93, 11312-11320.  doi: 10.1021/acs.analchem.1c02670

    63. [63]

      Li, H.; Sun, D. -E.; Liu, Y.; Liu, Z. An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer. Biosens Bioelectron 2014, 55, 149-156.  doi: 10.1016/j.bios.2013.11.079

    64. [64]

      Wen, J.; Zhou, L.; Jiang, D.; Shan, X.; Wang, W.; Shiigi, H.; Chen, Z. Ultrasensitive ECL aptasensing of kanamycin based on synergistic promotion strategy using 3, 4, 9, 10-perylenetetracar-boxylic-l-cysteine/Au@HKUST-1. Anal. Chim. Acta 2021, 1180, 338780.  doi: 10.1016/j.aca.2021.338780

    65. [65]

      Feng, D.; Tan, X.; Wu, Y.; Ai, C.; Luo, Y.; Chen, Q.; Han, H. Electrochemiluminecence nanogears aptasensor based on MIL-53(Fe)@CdS for multiplexed detection of kanamycin and neomycin. Biosens Bioelectron 2019, 129, 100-106.  doi: 10.1016/j.bios.2018.12.050

    66. [66]

      Nie, Y.; Tao, X.; Zhang, H.; Chai, Y. Q.; Yuan, R. Self-assembly of gold nanoclusters into a metal-organic framework with efficient electrochemiluminescence and their application for sensitive detection of rutin. Anal. Chem. 2021, 93, 3445-3451.  doi: 10.1021/acs.analchem.0c04682

    67. [67]

      Ma, X.; Pang, C.; Li, S.; Li, J.; Wang, M.; Xiong, Y.; Su, L.; Luo, J.; Xu, Z.; Lin, L. Biomimetic synthesis of ultrafine mixed-valence metal-organic framework nanowires and their application in electrochemiluminescence sensing. ACS Appl Mater Interfaces 2021, 13, 41987-41996.  doi: 10.1021/acsami.1c10074

    68. [68]

      Li, J.; Jiang, D.; Shan, X.; Wang, W.; Ou, G.; Jin, H.; Chen, Z. Determination of acetamiprid using electrochemiluminescent aptasensor modified by MoS2QDs-PATP/PTCA and NH2-UiO-66. Microchim. Acta 2021, 188, 44.  doi: 10.1007/s00604-021-04706-3

    69. [69]

      Ding, L.; Hong, H.; Xiao, L.; Hu, Q.; Zuo, Y.; Hao, N.; Wei, J.; Wang, K. Nanoparticles-doped induced defective ZIF-8 as the novel cathodic luminophore for fabricating high-performance electrochemiluminescence aptasensor for detection of omethoate. Biosens. Bioelectron. 2021, 192, 113492.  doi: 10.1016/j.bios.2021.113492

    70. [70]

      Chen, P.; Liu, Z.; Liu, J.; Liu, H.; Bian, W.; Tian, D.; Xia, F.; Zhou, C. A novel electrochemiluminescence aptasensor based CdTe QDs@NH2-MIL-88(Fe) for signal amplification. Electrochim. Acta 2020, 354, 136644.  doi: 10.1016/j.electacta.2020.136644

    71. [71]

      Liu, H.; Liu, Z.; Yi, J.; Ma, D.; Xia, F.; Tian, D.; Zhou, C. A dual-signal electroluminescence aptasensor based on hollow Cu/Co-MOF-luminol and g-C3N4 for simultaneous detection of acetamiprid and malathion. Sensor. Actuat. B-Chem. 2021, 331, 129412.  doi: 10.1016/j.snb.2020.129412

    72. [72]

      Gao, H.; Wei, X.; Li, M.; Wang, L.; Wei, T.; Dai, Z. Co-quenching effect between lanthanum metal-organic frameworks luminophore and crystal violet for enhanced electrochemiluminescence gene detection. Small 2021, 17, e2103424.  doi: 10.1002/smll.202103424

    73. [73]

      Chen, I. H.; Aguilar, H. A.; Paez Paez, J. S.; Wu, X.; Pan, L.; Wendt, M. K.; Iliuk, A. B.; Zhang, Y.; Tao, W. A. Analytical pipeline for discovery and verification of glycoproteins from plasma-derived extracellular vesicles as breast cancer biomarkers. Anal. Chem. 2018, 90, 6307-6313.  doi: 10.1021/acs.analchem.8b01090

    74. [74]

      Wang, H. M.; Wang, A. J.; Yuan, P. X.; Feng, J. J. Flower-like metalorganic framework microsphere as a novel enhanced ECL luminophore to construct the coreactant-free biosensor for ultrasensitive detection of breast cancer 1 gene. Sensor. Actuat. B-Chem. 2020, 320, 128395.  doi: 10.1016/j.snb.2020.128395

    75. [75]

      Shao, H.; Lu, J.; Zhang, Q.; Hu, Y.; Wang, S.; Guo, Z. Rutheniumbased metal organic framework (Ru-MOF)-derived novel Faraday-cage electrochemiluminescence biosensor for ultrasensitive detection of miRNA-141. Sensor. Actuat. B-Chem. 2018, 268, 39-46.  doi: 10.1016/j.snb.2018.04.088

    76. [76]

      Yang, Y.; Zhang, J. L.; Liang, W. -B.; Zhang, J. L.; Xu, X. L.; Zhang, Y. J.; Yuan, R.; Xiao, D. -R. Conductive NiCo bimetal-organic framework nanorods with conductivity-enhanced electrochemiluminescence for constructing biosensing platform. Sensor. Actuat. B-Chem. 2022, 362, 131802.  doi: 10.1016/j.snb.2022.131802

    77. [77]

      Jiang, Y.; Li, R.; He, W.; Li, Q.; Yang, X.; Li, S.; Bai, W.; Li, Y. MicroRNA-21 electrochemiluminescence biosensor based on Co-MOF-N-(4-aminobutyl)-N-ethylisoluminol/Ti3C2Tx composite and duplex-specific nuclease-assisted signal amplification. Microchim. Acta 2022, 189, 129.  doi: 10.1007/s00604-022-05246-0

    78. [78]

      Wang, J. M.; Yao, L. Y.; Huang, W.; Yang, Y.; Liang, W. B.; Yuan, R.; Xiao, D. R. Overcoming aggregation-induced quenching by metal-organic framework for electrochemiluminescence (ECL) enhancement: Zn-PTC as a new ECL emitter for ultrasensitive micrornas detection. ACS Appl. Mater. Interfaces 2021, 13, 44079-44085.  doi: 10.1021/acsami.1c13086

    79. [79]

      Zhao, L.; Song, X.; Ren, X.; Wang, H.; Fan, D.; Wu, D.; Wei, Q. Ultrasensitive near-infrared electrochemiluminescence biosensor derived from Eu-MOF with antenna effect and high efficiency catalysis of specific CoS2 hollow triple shelled nanoboxes for procalcitonin. Biosens. Bioelectron. 2021, 191, 113409.  doi: 10.1016/j.bios.2021.113409

    80. [80]

      Hu, L.; Song, C.; Shi, T.; Cui, Q.; Yang, L.; Li, X.; Wu, D.; Ma, H.; Zhang, Y.; Wei, Q.; Ju, H. Dual-quenching electrochemiluminescence resonance energy transfer system from IRMOF-3 coreaction accelerator enriched nitrogen-doped GQDs to ZnO@Au for sensitive detection of procalcitonin. Sensor. Actuat. B-Chem. 2021, 346, 130495.  doi: 10.1016/j.snb.2021.130495

    81. [81]

      Wang, C.; Zhang, N.; Wei, D.; Feng, R.; Fan, D.; Hu, L.; Wei, Q.; Ju, H. Double electrochemiluminescence quenching effects of Fe3O4@PDA-CuXO towards self-enhanced Ru(bpy)32+ functionalized MOFs with hollow structure and it application to procalcitonin immunosensing. Biosens. Bioelectron. 2019, 142, 111521.  doi: 10.1016/j.bios.2019.111521

    82. [82]

      Wang, R.; Ma, H.; Zhang, Y.; Wang, Q.; Yang, Z.; Du, B.; Wu, D.; Wei, Q. Photoelectrochemical sensitive detection of insulin based on CdS/polydopamine co-sensitized WO3 nanorod and signal amplification of carbon nanotubes@polydopamine. Biosens. Bioelectron. 2017, 96, 345-350.  doi: 10.1016/j.bios.2017.05.029

    83. [83]

      Ma, H.; Li, X.; Yan, T.; Li, Y.; Liu, H.; Zhang, Y.; Wu, D.; Du, B.; Wei, Q. Sensitive insulin detection based on electrogenerated chemiluminescence resonance energy transfer between Ru(bpy)32+ and Au nanoparticledoped beta-cyclodextrin-Pb(II) metal-organic framework. ACS Appl. Mater. Interfaces 2016, 8, 10121-7.  doi: 10.1021/acsami.5b11991

    84. [84]

      Zhao, G.; Wang, Y.; Li, X.; Dong, X.; Wang, H.; Du, B.; Cao, W.; Wei, Q. Quenching electrochemiluminescence immunosensor based on resonance energy transfer between ruthenium(II) complex incorporated in the UiO-67 metal-organic framework and gold nanoparticles for insulin detection. ACS Appl. Mater. Interfaces 2018, 10, 22932-22938.  doi: 10.1021/acsami.8b04786

    85. [85]

      Yan, M.; Ye, J.; Zhu, Q.; Zhu, L.; Huang, J.; Yang, X. Ultrasensitive immunosensor for cardiac troponin I detection based on the electrochemiluminescence of 2D Ru-MOF nanosheets. Anal. Chem. 2019, 91, 10156-10163.  doi: 10.1021/acs.analchem.9b02169

    86. [86]

      Wang, S.; Zhao, Y.; Wang, M.; Li, H.; Saqib, M.; Ge, C.; Zhang, X.; Jin, Y. Enhancing luminol electrochemiluminescence by combined use of cobalt-based metal organic frameworks and silver nanoparticles and its application in ultrasensitive detection of cardiac troponin I. Anal. Chem. 2019, 91, 3048-3054.  doi: 10.1021/acs.analchem.8b05443

    87. [87]

      Jiang, X.; Wang, H.; Chai, Y.; Shi, W.; Yuan, R. High-efficiency CNNS@NH2-MIL(Fe) electrochemiluminescence emitters coupled with Ti3C2 nanosheets as a matrix for a highly sensitive cardiac troponin I assay. Anal. Chem. 2020, 92, 8992-9000.  doi: 10.1021/acs.analchem.0c01075

    88. [88]

      Dutta Dipankar, J.; Woo Dong, H.; Lee Philip, R.; Pajevic, S.; Bukalo, O.; Huffman William, C.; Wake, H.; Basser Peter, J.; SheikhBahaei, S.; Lazarevic, V.; Smith Jeffrey, C.; Fields, R. D. Regulation of myelin structure and conduction velocity by perinodal astrocytes. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 11832-11837.  doi: 10.1073/pnas.1811013115

    89. [89]

      Sharma, R.; Waller, A. P.; Agrawal, S.; Wolfgang, K. J.; Luu, H.; Shahzad, K.; Isermann, B.; Smoyer, W. E.; Nieman, M. T.; Kerlin, B. A. Thrombin-induced podocyte injury is protease-activated receptor dependent. J. Am. Soc. Nephrol. 2017, 28, 2618.  doi: 10.1681/ASN.2016070789

    90. [90]

      Fang, Y.; Wang, H. M.; Gu, Y. X.; Yu, L.; Wang, A. J.; Yuan, P. X.; Feng, J. J. Highly enhanced electrochemiluminescence luminophore generated by zeolitic imidazole framework-8-linked porphyrin and its application for thrombin detection. Anal. Chem. 2020, 92, 3206-3212.  doi: 10.1021/acs.analchem.9b04938

    91. [91]

      Li, P.; Luo, L.; Cheng, D.; Sun, Y.; Zhang, Y.; Liu, M.; Yao, S. Regulation of the structure of zirconium-based porphyrinic metal-organic framework as highly electrochemiluminescence sensing platform for thrombin. Anal. Chem. 2022, 94, 5707-5714.  doi: 10.1021/acs.analchem.2c00737

    92. [92]

      Huang, Q.; Luo, F.; Lin, C.; Wang, J.; Qiu, B.; Lin, Z. Electrochemiluminescence biosensor for thrombin detection based on metal organic framework with electrochemiluminescence indicator embedded in the framework. Biosens. Bioelectron. 2021, 189, 113374.  doi: 10.1016/j.bios.2021.113374

    93. [93]

      Huang, W.; Hu, G. B.; Liang, W. B.; Wang, J. M.; Lu, M. L.; Yuan, R.; Xiao, D. R. Ruthenium(II) complex-grafted hollow hierarchical metalorganic frameworks with superior electrochemiluminescence performance for sensitive assay of thrombin. Anal. Chem. 2021, 93, 6239-6245.  doi: 10.1021/acs.analchem.1c00636

    94. [94]

      Song, X.; Zhao, L.; Luo, C.; Ren, X.; Yang, L.; Wei, Q. Peptide-based biosensor with a luminescent copper-based metal-organic framework as an electrochemiluminescence emitter for trypsin assay. Anal. Chem. 2021, 93, 9704-9710.  doi: 10.1021/acs.analchem.1c00850

    95. [95]

      Ma, H.; Li, X.; Yan, T.; Li, Y.; Zhang, Y.; Wu, D.; Wei, Q.; Du, B. Electrochemiluminescent immunosensing of prostate-specific antigen based on silver nanoparticles-doped Pb(II) metal-organic framework. Biosens. Bioelectron. 2016, 79, 379-385.  doi: 10.1016/j.bios.2015.12.080

    96. [96]

      Shao, K.; Wang, B.; Nie, A.; Ye, S.; Ma, J.; Li, Z.; Lv, Z.; Han, H. Target-triggered signal-on ratiometric electrochemiluminescence sensing of PSA based on MOF/Au/G-quadruplex. Biosens. Bioelectron. 2018, 118, 160-166.  doi: 10.1016/j.bios.2018.07.029

    97. [97]

      Khoshfetrat, S. M.; Hashemi, P.; Afkhami, A.; Hajian, A.; Bagheri, H. Cascade electrochemiluminescence-based integrated graphitic carbon nitride-encapsulated metal-organic framework nanozyme for prostatespecific antigen biosensing. Sensor. Actuat. B-Chem. 2021, 348, 130658.  doi: 10.1016/j.snb.2021.130658

    98. [98]

      Ji, L.; Yan, T.; Li, Y.; Gao, J.; Wang, Q.; Hu, L.; Wu, D.; Wei, Q.; Du, B. Preparation of Au-polydopamine functionalized carbon encapsulated Fe3O4 magnetic nanocomposites and their application for ultrasensitive detection of carcino-embryonic antigen. Sci. Rep. 2016, 6, 21017.  doi: 10.1038/srep21017

    99. [99]

      Huang, X.; Deng, X.; Qi, W.; Wu, D. A metal-organic framework nanomaterial as an ideal loading platform for ultrasensitive electrochemiluminescence immunoassays. New J. Chem. 2018, 42, 13558-13564.  doi: 10.1039/C8NJ02038H

    100. [100]

      Liu, Q.; Yang, Y.; Liu, X. P.; Wei, Y. P.; Mao, C. J.; Chen, J. S.; Niu, H. L.; Song, J. M.; Zhang, S. Y.; Jin, B. K.; Jiang, M. A facile in situ synthesis of MIL-101-CdSe nanocomposites for ultrasensitive electrochemiluminescence detection of carcinoembryonic antigen. Sensor. Actuat. B-Chem. 2017, 242, 1073-1078.  doi: 10.1016/j.snb.2016.09.143

    101. [101]

      Wang, C.; Li, Z.; Ju, H. Copper-doped terbium luminescent metal organic framework as an emitter and a Co-reaction promoter for amplified electrochemiluminescence immunoassay. Anal. Chem. 2021, 93, 14878-14884.  doi: 10.1021/acs.analchem.1c03988

    102. [102]

      Zhao, G.; Wang, Y.; Li, X.; Yue, Q.; Dong, X.; Du, B.; Cao, W.; Wei, Q. Dual-quenching electrochemiluminescence strategy based on three-dimensional metal-organic frameworks for ultrasensitive detection of amyloid-beta. Anal. Chem. 2019, 91, 1989-1996.  doi: 10.1021/acs.analchem.8b04332

    103. [103]

      Wang, C.; Zhang, N.; Li, Y.; Yang, L.; Wei, D.; Yan, T.; Ju, H.; Du, B.; Wei, Q. Cobalt-based metal-organic frameworks as co-reaction accele-rator for enhancing electrochemiluminescence behavior of N-(aminobutyl)-N-(ethylisoluminol) and ultrasensitive immunosensing of amyloid-β protein. Sensor. Actuat. B-Chem. 2019, 291, 319-328.  doi: 10.1016/j.snb.2019.04.097

    104. [104]

      Wu, J.; Wang, A.; Liu, P.; Hou, Y.; Song, L.; Yuan, R.; Fu, Y. Sulfur-functionalized zirconium(IV)-based metal-organic frameworks relieves aggregation-caused quenching effect in efficient electrochemiluminescence. Sensor. Actuat. B-Chem. 2020, 321, 128531.  doi: 10.1016/j.snb.2020.128531

    105. [105]

      Johnson, G. L.; Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002, 298, 1911-1912.  doi: 10.1126/science.1072682

    106. [106]

      Newton, K.; Dugger Debra, L.; Wickliffe Katherine, E.; Kapoor, N.; de Almagro, M. C.; Vucic, D.; Komuves, L.; Ferrando Ronald, E.; French Dorothy, M.; Webster, J.; Roose-Girma, M.; Warming, S.; Dixit Vishva, M. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 2014, 343, 1357-1360.  doi: 10.1126/science.1249361

    107. [107]

      Zhang, G. Y.; Cai, C.; Cosnier, S.; Zeng, H. B.; Zhang, X. J.; Shan, D. Zirconium-metalloporphyrin frameworks as a three-in-one platform possessing oxygen nanocage, electron media, and bonding site for electrochemiluminescence protein kinase activity assay. Nanoscale 2016, 8, 11649-11657.  doi: 10.1039/C6NR01206J

    108. [108]

      Kufe, D. W. Mucins in cancer: function, prognosis and therapy. Nat. Rev. Cancer 2009, 9, 874-885.  doi: 10.1038/nrc2761

    109. [109]

      Huang, L. Y.; Hu, X.; Shan, H. Y.; Yu, L.; Gu, Y. X.; Wang, A. J.; Shan, D.; Yuan, P. -X.; Feng, J. J. High-performance electrochemiluminescence emitter of metal organic framework linked with porphyrin and its application for ultrasensitive detection of biomarker mucin-1. Sensor. Actuat. B-Chem. 2021, 344, 130300.  doi: 10.1016/j.snb.2021.130300

    110. [110]

      Hu, G. B.; Xiong, C. Y.; Liang, W. B.; Zeng, X. S.; Xu, H. L.; Yang, Y.; Yao, L. Y.; Yuan, R.; Xiao, D. R. Highly stable mesoporous luminescence-functionalized MOF with excellent electrochemiluminescence property for ultrasensitive immunosensor construction. ACS Appl. Mater. Interfaces 2018, 10, 15913-15919.  doi: 10.1021/acsami.8b05038

    111. [111]

      Yao, L. Y.; Yang, F.; Liang, W. B.; Hu, G. B.; Yang, Y.; Huang, W.; Yuan, R.; Xiao, D. R. Ruthenium complex doped metal-organic nanoplate with high electrochemiluminescent intensity and stability for ultrasensitive assay of mucin 1. Sensor. Actuat. B-Chem. 2019, 292, 105-110.  doi: 10.1016/j.snb.2019.04.130

    112. [112]

      Wang, S.; Wang, M.; Li, C.; Li, H.; Ge, C.; Zhang, X.; Jin, Y. A highly sensitive and stable electrochemiluminescence immunosensor for alphafetoprotein detection based on luminol-AgNPs@Co/Ni-MOF nanosheet microflowers. Sensor. Actuat. B-Chem. 2020, 311, 127919.  doi: 10.1016/j.snb.2020.127919

    113. [113]

      Ding, Y.; Zhang, X.; Peng, J.; Zheng, D.; Zhang, X.; Song, Y.; Chen, Y.; Gao, W. Ultra-sensitive electrochemiluminescence platform based on magnetic metal-organic framework for the highly efficient enrichment. Sensor. Actuat. B-Chem. 2020, 324, 128700.  doi: 10.1016/j.snb.2020.128700

    114. [114]

      Baker-Austin, C.; Stockley, L.; Rangdale, R.; Martinez-Urtaza, J. Environmental occurrence and clinical impact of Vibrio vulnificus and Vibrio parahaemolyticus: a European perspective. Environ. Microbiol. Rep. 2010, 2, 7-18.  doi: 10.1111/j.1758-2229.2009.00096.x

    115. [115]

      Wei, W.; Lin, H.; Shao, H.; Hao, T.; Wang, S.; Hu, Y.; Guo, Z.; Su, X. Faraday cage-type aptasensor for dual-mode detection of Vibrio parahaemolyticus. Microchim. Acta 2020, 187, 529.  doi: 10.1007/s00604-020-04506-1

    116. [116]

      Adegoke, O.; Morita, M.; Kato, T.; Ito, M.; Suzuki, T.; Park, E. Y. Localized surface plasmon resonance-mediated fluorescence signals in plasmonic nanoparticle-quantum dot hybrids for ultrasensitive Zika virus RNA detection via hairpin hybridization assays. Biosens. Bioelectron. 2017, 94, 513-522.  doi: 10.1016/j.bios.2017.03.046

    117. [117]

      Zhang, Y. W.; Liu, W. S.; Chen, J. S.; Niu, H. L.; Mao, C. J.; Jin, B. K. Metal-organic gel and metal-organic framework based switchable electrochemiluminescence RNA sensing platform for Zika virus. Sensor. Actuat. B-Chem. 2020, 321, 128456.  doi: 10.1016/j.snb.2020.128456

    118. [118]

      Ma, J.; Wang, W.; Li, Y.; Lu, Z.; Tan, X.; Han, H. Novel porphyrin Zr metal-organic framework (PCN-224)-based ultrastable electrochemiluminescence system for PEDV sensing. Anal. Chem. 2021, 93, 2090-2096.  doi: 10.1021/acs.analchem.0c03836

    119. [119]

      Shabani, A.; Zourob, M.; Allain, B.; Marquette, C. A.; Lawrence, M. F.; Mandeville, R. Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria. Anal. Chem. 2008, 80, 9475-9482.  doi: 10.1021/ac801607w

    120. [120]

      Sun, L.; Chen, Y.; Duan, Y.; Ma, F. Electrogenerated chemiluminescence biosensor based on functionalized two-dimensional metal-organic frameworks for bacterial detection and antimicrobial susceptibility assays. ACS Appl. Mater. Interfaces 2021, 13, 38923-38930.  doi: 10.1021/acsami.1c11949

  • 加载中
    1. [1]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    2. [2]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    3. [3]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    7. [7]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    8. [8]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    9. [9]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    10. [10]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    11. [11]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    12. [12]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    13. [13]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    14. [14]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    15. [15]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    16. [16]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    17. [17]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

    18. [18]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    19. [19]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    20. [20]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

Metrics
  • PDF Downloads(5)
  • Abstract views(767)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return