Citation: Hongdong Li, Yue Pan, Jianping Lai, Lei Wang, Shouhua Feng. Strong High Entropy Alloy-Support Interaction Enables Efficient Electrocatalytic Water Splitting at High Current Density[J]. Chinese Journal of Structural Chemistry, ;2022, 41(8): 220800. doi: 10.14102/j.cnki.0254-5861.2022-0125 shu

Strong High Entropy Alloy-Support Interaction Enables Efficient Electrocatalytic Water Splitting at High Current Density

Figures(5)

  • In electrocatalysis, the stability issue between catalyst and support still needs great attention. Here, a series of high-entropy alloy nanoparticles (HEA-NPs) embedded in carbon cloth (CC) were synthesized by using the scalable strategy-microwave heating. Among them, PtRhCoNiCu/CC exhibits outstanding hydrogen evolution reaction (HER) activity (19 and 170 mV overpotential at 10 and 1000 mA cm-2) and stability (150 h), outperforming other recently reported HEAs catalysts. IrRuCoNiCu/CC displays superior oxygen evolution reaction (OER) activity (166 and 354 mV overpotential at 10 and 1000 mA cm-2) and stability (150 h), and shows a lower overpotential than recently reported HEA catalysts. In water splitting, IrRuCoNiCu/CC(+)//PtRhCoNiCu/CC(-) electrolyzer achieves 500 mA cm-2 (1000 mA cm-2) high current density at 1.76 V (1.88 V) and exhibits excellent stability, which is one of the best catalysts currently. Therefore, the novel supported HEA catalyst with high stability is expected to be a promising candidate material for industrialized water splitting.
  • 加载中
    1. [1]

      George, E. P.; Raabe, D.; Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515-534.  doi: 10.1038/s41578-019-0121-4

    2. [2]

      Batchelor, T. A. A.; Pedersen, J. K.; Winther, S. H.; Castelli, I. E.; Jacobsen, K. W.; Rossmeisl, J. High-entropy alloys as a discovery platform for electrocatalysis. Joule 2019, 3, 834-845.  doi: 10.1016/j.joule.2018.12.015

    3. [3]

      Lu, Z.; Chen, Z. W.; Singh, C. V. Neural network-assisted development of high-entropy alloy catalysts: decoupling ligand and coordination effects. Matter 2020, 3, 1318-1333.  doi: 10.1016/j.matt.2020.07.029

    4. [4]

      Xin, Y.; Li, S.; Qian, Y.; Zhu, W.; Yuan, H.; Jiang, P.; Guo, R.; Wang, L. High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS Catal. 2020, 10, 11280-11306.  doi: 10.1021/acscatal.0c03617

    5. [5]

      Amiri, A.; Shahbazian-Yassar, R. Recent progress of high-entropy materials for energy storage and conversion. J. Mater. Chem. A 2021, 9, 782-823.  doi: 10.1039/D0TA09578H

    6. [6]

      Li, H.; Lai, J.; Li, Z.; Wang, L. Multi-sites electrocatalysis in highentropy alloys. Adv. Funct. Mater. 2021, 31, 2106715.  doi: 10.1002/adfm.202106715

    7. [7]

      Sun, Y.; Dai, S. High-entropy materials for catalysis: a new frontier. Sci. Adv. 2021, 7, eabg1600.  doi: 10.1126/sciadv.abg1600

    8. [8]

      Zhang, D.; Shi, Y.; Zhao, H.; Qi, W.; Chen, X.; Zhan, T.; Li, S.; Yang, B.; Sun, M.; Lai, J.; Huang, B.; Wang, L. Facile oil phase synthesis of multisite synergistic high-entropy alloy to promote alkaline hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 889-893.  doi: 10.1039/D0TA10574K

    9. [9]

      Li, T.; Dong, Q.; Huang, Z.; Wu, L.; Yao, Y.; Gao, J.; Wang, X.; Zhang, H.; Wang, D.; Li, T.; Shahbazian-Yassar, R.; Hu, L. Interface engineering between multi-elemental alloy nanoparticles and carbon support toward stable catalysts. Adv. Mater. 2022, 32, 2106436.

    10. [10]

      Masa, J.; Andronescu, C.; Schuhmann, W. Electrocatalysis as the nexus for sustainable renewable energy: the gordian knot of activity, stability, and selectivity. Angew. Chem. Int. Ed. 2020, 59, 15298-15312.

    11. [11]

      Huang, H.; Yan, M.; Yang, C.; He, H.; Jiang, Q.; Yang, L.; Lu, Z.; Sun, Z.; Xu, X.; Bando, Y.; Yamauchi, Y. Graphene nanoarchitectonics: recent advances in graphene-based electrocatalysts for hydrogen evolution reaction. Adv. Mater. 2019, 31, 1903415.  doi: 10.1002/adma.201903415

    12. [12]

      Karuppannan, M.; Kim, Y.; Gok, S.; Lee, E.; Hwang, J. Y.; Jang, J. -H.; Cho, Y. -H.; Lim, T.; Sung, Y. -E.; Kwon, O. J. A highly durable carbonnanofiber-supported Pt-C core-shell cathode catalyst for ultra-low Pt loading proton exchange membrane fuel cells: facile carbon encapsulation. Energy Environ. Sci. 2019, 12, 2820-2829.  doi: 10.1039/C9EE01000A

    13. [13]

      Zhang, J.; Zhang, Q.; Feng, X. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.  doi: 10.1002/adma.201808167

    14. [14]

      Gerber, I. C.; Serp, P. A theory/experience description of support effects in carbon-supported catalysts. Chem. Rev. 2020, 120, 1250-1349.

    15. [15]

      Li, C. -Z.; Wang, Z. -B.; Sui, X. -L.; Zhang, L. -M.; Gu, D. -M.; Gu, S. Graphitic carbon nitride nanosheet coated carbon black as a highperformance PtRu catalyst support material for methanol electrooxidation. J. Mater. Chem. A 2014, 2, 20139-20146.  doi: 10.1039/C4TA04594G

    16. [16]

      Shao, Y.; Yin, G.; Gao, Y. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J. Power Sources 2007, 171, 558-566.  doi: 10.1016/j.jpowsour.2007.07.004

    17. [17]

      Shi, W.; Zhang, B.; Lin, Y.; Wang, Q.; Zhang, Q.; Su, D. S. Enhanced chemoselective hydrogenation through tuning the interaction between Pt nanoparticles and carbon supports: insights from identical location transmission electron microscopy and X-ray photoelectron spectroscopy. ACS Catal. 2016, 6, 7844-7854.

    18. [18]

      Chen, Q.; Nie, Y.; Ming, M.; Fan, G.; Zhang, Y.; Hu, J. -S. Sustainable synthesis of supported metal nanocatalysts for electrochemical hydrogen evolution. Chin. J. Catal. 2020, 41, 1791-1811.  doi: 10.1016/S1872-2067(20)63652-X

    19. [19]

      Van Deelen, T. W.; Hernández Mejía, C.; De Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955-970.  doi: 10.1038/s41929-019-0364-x

    20. [20]

      Hu, S.; Li, W. -X. Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts. Science 2021, 374, 1360-1365.  doi: 10.1126/science.abi9828

    21. [21]

      Sun, H.; Tung, C. -W.; Qiu, Y.; Zhang, W.; Wang, Q.; Li, Z.; Tang, J.; Chen, H. -C.; Wang, C.; Chen, H. M. Atomic metal-support interaction enables reconstruction-free dual-site electrocatalyst. J. Am. Chem. Soc. 2022, 144, 1174-1186.  doi: 10.1021/jacs.1c08890

    22. [22]

      Wu, X.; Wang, Z.; Zhang, D.; Qin, Y.; Wang, M.; Han, Y.; Zhan, T.; Yang, B.; Li, S.; Lai, J.; Wang, L. Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution. Nat. Commun. 2021, 12, 4018.

    23. [23]

      Shi, Y.; Ma, Z. -R.; Xiao, Y. -Y.; Yin, Y. -C.; Huang, W. -M.; Huang, Z. -C.; Zheng, Y. -Z.; Mu, F. -Y.; Huang, R.; Shi, G. -Y.; Sun, Y. -Y.; Xia, X. -H.; Chen, W. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 2021, 12, 3021.

    24. [24]

      Li, Z.; Wu, R.; Zhao, L.; Li, P.; Wei, X.; Wang, J.; Chen, J. S.; Zhang, T. Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: recent advances and future perspectives. Nano Res. 2021, 14, 3795-3809.

    25. [25]

      Zhang, J.; Ma, J.; Choksi, T. S.; Zhou, D.; Han, S.; Liao, Y. -F.; Yang, H. B.; Liu, D.; Zeng, Z.; Liu, W.; Sun, X.; Zhang, T.; Liu, B. Strong metalsupport interaction boosts activity, selectivity, and stability in electrosynthesis of H2O2. J. Am. Chem. Soc. 2022, 144, 2255-2263.

    26. [26]

      Jayabal, S.; Saranya, G.; Geng, D.; Lin, L. -Y.; Meng, X. Insight into the correlation of Pt-support interactions with electrocatalytic activity and durability in fuel cells. J. Mater. Chem. A 2020, 8, 9420-9446.

    27. [27]

      Shilin, Z.; Liang, S.; Qining, F.; Fangli, Z.; Zhijie, W.; Jinshuo, Z.; Shiyong, Z.; Jianfeng, M.; Zaiping, G. Challenges and prospects of lithium-CO2 batteries. Nano Res. Energy 2022, https://doi.org/10.26599/NRE.2022.9120001.

    28. [28]

      Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Kar, K. K. Microwave as a tool for synthesis of carbon-based electrodes for energy storage. ACS Appl. Mater. Interfaces 2021, 14, 20306-20325.

    29. [29]

      Lin, G.; Ju, Q.; Jin, Y.; Qi, X.; Liu, W.; Huang, F.; Wang, J. Suppressing dissolution of Pt-based electrocatalysts through the electronic metal-support interaction. Adv. Energy Mater. 2021, 11, 2101050.

    30. [30]

      Qiao, H.; Saray, M. T.; Wang, X.; Xu, S.; Chen, G.; Huang, Z.; Chen, C.; Zhong, G.; Dong, Q.; Hong, M.; Xie, H.; Shahbazian-Yassar, R.; Hu, L. Scalable synthesis of high entropy alloy nanoparticles by microwave heating. ACS Nano 2021, 15, 14928-14937.

    31. [31]

      Schwenke, A. M.; Hoeppener, S.; Schubert, U. S. Synthesis and modification of carbon nanomaterials utilizing microwave heating. Adv. Mater. 2015, 27, 4113-4141.

    32. [32]

      Yu, W.; Huang, H.; Qin, Y.; Zhang, D.; Zhang, Y.; Liu, K.; Zhang, Y.; Lai, J.; Wang, L. The synergistic effect of pyrrolic-N and pyridinic-N with Pt under strong metal-support interaction to achieve high-performance alkaline hydrogen evolution. Adv. Energy Mater. 2022, 2200110.

    33. [33]

      Zhao, H.; Zhang, D.; Yuan, Y.; Wu, X.; Li, S.; Li, Z.; Lai, J.; Wang, L. Rapid and large-scale synthesis of ultra-small immiscible alloy supported catalysts. Appl. Catal. B Environ. 2022, 304, 120916.

    34. [34]

      Xiong, G.; Jia, J.; Zhao, L.; Liu, X.; Zhang, X.; Liu, H.; Zhou, W. Non-thermal radiation heating synthesis of nanomaterials. Sci. Bull. 2021, 66, 386-406.

    35. [35]

      Ye, S.; Luo, F.; Zhang, Q.; Zhang, P.; Xu, T.; Wang, Q.; He, D.; Guo, L.; Zhang, Y.; He, C.; Ouyang, X.; Gu, M.; Liu, J.; Sun, X. Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy Environ. Sci. 2019, 12, 1000-1007.

    36. [36]

      Bae, S. -Y.; Mahmood, J.; Jeon, I. -Y.; Baek, J. -B. Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horiz. 2020, 5, 43-56.

    37. [37]

      Mu, X.; Gu, J.; Feng, F.; Xiao, Z.; Chen, C.; Liu, S.; Mu, S. RuRh bimetallene nanoring as high-efficiency pH-universal catalyst for hydrogen evolution reaction. Adv. Sci. 2021, 8, 2002341.

    38. [38]

      Wang, Q.; Ming, M.; Niu, S.; Zhang, Y.; Fan, G.; Hu, J. -S. Scalable solid-state synthesis of highly dispersed uncapped metal (Rh, Ru, Ir) nanoparticles for efficient hydrogen evolution. Adv. Energy Mater. 2018, 8, 1801698.

    39. [39]

      Wang, X.; Zheng, Y.; Sheng, W.; Xu, Z. J.; Jaroniec, M.; Qiao, S. -Z. Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater. Today 2020, 36, 125-138.

    40. [40]

      Hao, R.; Feng, Q. -L.; Wang, X. -J.; Zhang, Y. -C.; Li, K. -S. Morphology-controlled growth of large-area PtSe2 films for enhanced hydrogen evolution reaction. Rare Met. 2022, 41, 1314-1322.

    41. [41]

      Peng, X.; Mi, Y.; Liu, X.; Sun, J.; Qiu, Y.; Zhang, S.; Ke, X.; Wang, X.; Luo, J. Self-driven dual hydrogen production system based on a bifunctional single-atomic Rh catalyst. J. Mater. Chem. A 2022, 10, 6134-6145.

    42. [42]

      Zhao, M.; Chen, Z.; Lyu, Z.; Hood, Z. D.; Xie, M.; Vara, M.; Chi, M.; Xia, Y. Ru octahedral nanocrystals with a face-centered cubic structure, {111} facets, thermal stability up to 400 ℃, and enhanced catalytic activity. J. Am. Chem. Soc. 2019, 141, 7028-7036.

    43. [43]

      Cai, C.; Wang, M.; Han, S.; Wang, Q.; Zhang, Q.; Zhu, Y.; Yang, X.; Wu, D.; Zu, X.; Sterbinsky, G. E.; Feng, Z.; Gu, M. Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets. ACS Catal. 2021, 11, 123-130.

    44. [44]

      Shan, J.; Ling, T.; Davey, K.; Zheng, Y.; Qiao, S. -Z. Transitionmetal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater. 2019, 31, 1900510.

    45. [45]

      Shan, J.; Ye, C.; Chen, S.; Sun, T.; Jiao, Y.; Liu, L.; Zhu, C.; Song, L.; Han, Y.; Jaroniec, M.; Zhu, Y.; Zheng, Y.; Qiao, S. -Z. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation. J. Am. Chem. Soc. 2021, 143, 5201-5211.

    46. [46]

      Lyu, F.; Wang, Q.; Choi, S. M.; Yin, Y. Noble-metal-free electrocatalysts for oxygen evolution. Small 2019, 15, 1804201.

    47. [47]

      Anantharaj, S.; Aravindan, V. Developments and perspectives in 3d transition-metal-based electrocatalysts for neutral and near-neutral water electrolysis. Adv. Energy Mater. 2019, 10, 1902666.

    48. [48]

      Han, L.; Guo, L.; Dong, C.; Zhang, C.; Gao, H.; Niu, J.; Peng, Z.; Zhang, Z. Ternary mesoporous cobalt-iron-nickel oxide efficiently catalyzing oxygen/hydrogen evolution reactions and overall water splitting. Nano Res. 2019, 12, 2281-2287.

    49. [49]

      You, B.; Qiao, S. Z. Destabilizing alkaline water with 3d-metal (oxy)(hydr)oxides for improved hydrogen evolution. Chem. Eur. J. 2021, 27, 553-564.

    50. [50]

      Long, X.; Meng, J.; Gu, J.; Ling, L.; Li, Q.; Liu, N.; Wang, K.; Li, Z. Interfacial engineering of NiFeP/NiFe-LDH heterojunction for efficient overall water splitting. Chin. J. Struct. Chem. 2022, 41, 2204046-2204053.

    51. [51]

      Li, P.; Hong, W.; Liu W. Fabrication of large scale self-supported WC/Ni(OH)2 electrode for high-current-density hydrogen evolution. Chin. J. Struct. Chem. 2021, 40, 1365-1371.

    52. [52]

      Wu, H, S.; Miao, T. F.; Shi, H. X.; Xu, Y.; Fu, X. L.; Qian, L. Probing photocatalytic hydrogen evolution of cobalt complexes: experimental and theoretical methods. Chin. J. Struct. Chem. 2021, 40, 1696-1709.

    53. [53]

      Yang, M.; Liu, Y.; Sun, J.; Zhang, S.; Liu, X.; Luo, J. Integration of partially phosphatized bimetal centers into trifunctional catalyst for highperformance hydrogen production and flexible Zn-air battery. Sci. China Mater. 2022, 65, 1176-1186.

    54. [54]

      Jin, Z.; Lv, J.; Jia, H.; Liu, W.; Li, H.; Chen, Z.; Lin, X.; Xie, G.; Liu, X.; Sun, S.; Qiu, H. -J. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments. Small 2019, 15, 1904180.

    55. [55]

      Ma, P.; Zhang, S.; Zhang, M.; Gu, J.; Zhang, L.; Sun, Y.; Ji, W.; Fu, Z. Hydroxylated high-entropy alloy as highly efficient catalyst for electrochemical oxygen evolution reaction. Sci. China Mater. 2020, 63, 2613-2619.

    56. [56]

      Hua, W.; Sun, H. -H.; Xu, F.; Wang, J. -G. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 2020, 39, 335-351.

    57. [57]

      Tauster, S. J.; Fung, S. C.; Garten, R. L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 1978, 100, 170-175.

    58. [58]

      Chen, K.; Wang, Z.; Wang, L.; Wu, X.; Hu, B.; Liu, Z.; Wu, M. Boron nanosheet-supported Rh catalysts for hydrogen evolution: a new territory for the strong metal-support interaction effect. Nano-Micro. Lett. 2021, 13, 138.

    59. [59]

      Zhang, W.; Yang, Y.; Huang, B.; Lv, F.; Wang, K.; Li, N.; Luo, M.; Chao, Y.; Li, Y.; Sun, Y.; Xu, Z.; Qin, Y.; Yang, W.; Zhou, J.; Du, Y.; Su, D.; Guo, S. Ultrathin PtNiM (M = Rh, Os, and Ir) nanowires as efficient fuel oxidation electrocatalytic materials. Adv. Mater. 2019, 31, 1805833.

    60. [60]

      Zhu, J.; Hu, L.; Zhao, P.; Lee, L. Y. S.; Wong, K. -Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851-918.

    61. [61]

      Yuan, L. -P.; Jiang, W. -J.; Liu, X. -L.; He, Y. -H.; He, C.; Tang, T.; Zhang, J.; Hu, J. -S. Molecularly engineered strong metal oxide-support interaction enables highly efficient and stable CO2 electroreduction. ACS Catal. 2020, 10, 13227-13235.

    62. [62]

      Ritz, B.; Heller, H.; Myalitsin, A.; Kornowski, A.; Martin-Martinez, F. J.; Melchor, S.; Dobado, J. A.; Juárez, B. H.; Weller, H.; Klinke, C. Reversible attachment of platinum alloy nanoparticles to nonfunctionalized carbon nanotubes. ACS Nano 2010, 4, 2438-2444.

    63. [63]

      Rao, R. G.; Blume, R.; Hansen, T. W.; Fuentes, E.; Dreyer, K.; Moldovan, S.; Ersen, O.; Hibbitts, D. D.; Chabal, Y. J.; Schlögl, R.; Tessonnier, J. -P. Interfacial charge distributions in carbon-supported palladium catalysts. Nat. Commun. 2017, 8, 340.

    64. [64]

      Li, H.; Han, Y.; Zhao, H.; Qi, W.; Zhang, D.; Yu, Y.; Cai, W.; Li, S.; Lai, J.; Huang, B.; Wang, L. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 2020, 11, 5437.

    65. [65]

      Pan, C. -J.; Tsai, M. -C.; Su, W. -N.; Rick, J.; Akalework, N. G.; Agegnehu, A. K.; Cheng, S. -Y.; Hwang, B. -J. Tuning/exploiting strong metal-support Interaction (SMSI) in heterogeneous catalysis. J. Taiwan Inst. Chem. E 2017, 74, 154-186.

    66. [66]

      Löffler, T.; Savan, A.; Garzón-Manjón, A.; Meischein, M.; Scheu, C.; Ludwig, A.; Schuhmann, W. Toward a paradigm shift in electrocatalysis using complex solid solution nanoparticles. ACS Energy Lett. 2019, 4, 1206-1214.

    67. [67]

      Löffler, T.; Savan, A.; Meyer, H.; Meischein, M.; Strotkötter, V.; Ludwig, A.; Schuhmann, W. Design of complex solid-solution electrocatalysts by correlating configuration, adsorption energy distribution patterns, and activity curves. Angew. Chem. Int. Ed. 2020, 59, 5844-5850.

    68. [68]

      Shi, W.; Liu, H.; Li, Z.; Li, C.; Zhou, J.; Yuan, Y.; Jiang, F.; Fu, K.; Yao, Y. High-entropy alloy stabilized and activated Pt clusters for highly efficient electrocatalysis. SusMat 2022, 2, 186-196.

    69. [69]

      Li, H.; Sun, M.; Pan, Y.; Xiong, J.; Du, H.; Yu, Y.; Feng, S.; Li, Z.; Lai, J.; Huang, B.; Wang, L. The self-complementary effect through strong orbital coupling in ultrathin high-entropy alloy nanowires boosting pHuniversal multifunctional electrocatalysis. Appl. Catal. B Environ. 2022, 312, 121431.

    70. [70]

      Zhu, H.; Zhu, Z.; Hao, J.; Sun, S.; Lu, S.; Wang, C.; Ma, P.; Dong, W.; Du, M. High-entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution. Chem. Eng. J. 2021, 431, 133251.

    71. [71]

      Gupta, S.; Qiao, L.; Zhao, S.; Xu, H.; Lin, Y.; Devaguptapu, S. V.; Wang, X.; Swihart, M. T.; Wu, G. Highly active and stable graphene tubes decorated with FeCoNi alloy nanoparticles via a template-free graphitization for bifunctional oxygen reduction and evolution. Adv. Energy Mater. 2016, 6, 1601198.

    72. [72]

      Zheng, X.; Cao, X.; Sun, Z.; Zeng, K.; Yan, J.; Strasser, P.; Chen, X.; Sun, S.; Yang, R. Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries. Appl. Catal. B Environ. 2020, 272, 118967.

  • 加载中
    1. [1]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    2. [2]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    3. [3]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    4. [4]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    5. [5]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    6. [6]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    7. [7]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    8. [8]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    9. [9]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    10. [10]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    11. [11]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    12. [12]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    13. [13]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    14. [14]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    15. [15]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    16. [16]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    17. [17]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    18. [18]

      Wantong ZhangZixing XuGuofei DaiZhijian LiChunhui Deng . Removal of Microcystin-LR in lake water sample by hydrophilic mesoporous silica composites under high-throughput MALDI-TOF MS detection platform. Chinese Chemical Letters, 2024, 35(5): 109135-. doi: 10.1016/j.cclet.2023.109135

    19. [19]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    20. [20]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

Metrics
  • PDF Downloads(4)
  • Abstract views(260)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return