Transition Metal Boride-Based Materials for Electrocatalytic Water Splitting
- Corresponding author: Bin Liu, liubin@upc.edu.cn Bin Dong, dongbin@upc.edu.cn
Citation: Feng-Ge Wang, Xin Liu, Qian-Xi Lv, Bin Liu, Yong-Ming Chai, Bin Dong. Transition Metal Boride-Based Materials for Electrocatalytic Water Splitting[J]. Chinese Journal of Structural Chemistry, ;2022, 41(9): 220900. doi: 10.14102/j.cnki.0254-5861.2022-0117
Dong, B.; Xie, J. Y.; Wang, N.; Gao, W. K.; Ma, Y.; Chen, T. S.; Yan, X. T.; Li, Q. Z.; Zhou, Y. L.; Chai, Y. M. Zinc ion induced three-dimensional Co9S8 nano-neuron network for efficient hydrogen evolution. Renew. Energ. 2020, 157, 415-423.
doi: 10.1016/j.renene.2020.05.057
Radwan, A.; Jin, H.; He, D.; Mu, S. Design engineering, synthesis protocols, and energy applications of MOF-derived electrocatalysts. Nanomicro. Lett. 2021, 13, 132.
Zhang, L. C.; Zhao, H. T.; Xu, S. R.; Liu, Q.; Li, T. S.; Luo, Y. L.; Gao, S. Y.; Shi, X. F.; Asiri, A.; Sun X. P. Recent advances in 1D electrospun nanocatalysts for electrochemical water splitting. Small Struct. 2021, 2, 2000048.
doi: 10.1002/sstr.202000048
Wang, Y.; Huang, J.; Wang, L.; She, H.; Wang, Q. Research progress of ferrite materials for photoelectrochemical water splitting. Chin. J. Struct. Chem. 2022, 41, 2201054-2201068.
Zhang, J. Y.; Wang, H.; Tian, Y.; Yan, Y.; Xue, Q.; He, T.; Liu, H.; Wang, C.; Chen, Y.; Xia, B. Y. Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode. Angew. Chem. Int. Ed. 2018, 57, 7649-7653.
doi: 10.1002/anie.201803543
Gong, L.; Yang, H.; Wang, H.; Qi, R.; Wang, J.; Chen, S.; You, B.; Dong, Z.; Liu, H.; Xia, B. Y. Corrosion formation and phase transformation of nickel-iron hydroxide nanosheets array for efficient water oxidation. Nano Res. 2021, 14, 4528-4533.
doi: 10.1007/s12274-021-3366-3
Long, X.; Meng, J.; Gu, J.; Ling, L.; Li, Q.; Liu, N.; Wang, K.; Li, Z. Interfacial engineering of NiFeP/NiFe-LDH heterojunction for efficient overall water splitting. Chin. J. Struct. Chem. 2022, 41, 2201019-2201024.
Shao, L. Y.; Sun, H. M.; Miao, L. C.; Chen, X.; Han, M.; Sun, J. C.; Liu, S.; Li, L.; Cheng, F. Y.; Chen, J. Facile preparation of NH2- functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 2494-2499.
doi: 10.1039/C7TA10884B
Yang, Y.; Yu, Y.; Li, J.; Chen, Q.; Du, Y.; Rao, P.; Li, R.; Jia, C.; Kang, Z.; Deng, P.; Shen, Y.; Tian, X. Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nanomicro. Lett. 2021, 13, 160.
Yang, S.; Qin, L.; Zhang, W.; Cao, R. The mechanism of water oxidation from mn-based heterogeneous electrocatalysts. Chin. J. Struct. Chem. 2022, 41, 2204022-2204033.
Qin, J. F.; Yang, M.; Chen, T. S.; Dong, B.; Hou, S.; Ma, X.; Zhou, Y. N.; Yang, X. L.; Nan, J.; Chai, Y. M. Ternary metal sulfides MoCoNiS derived from metal organic frameworks for efficient oxygen evolution. Int. J. Hydrogen Energy 2020, 45, 2745-2753.
doi: 10.1016/j.ijhydene.2019.11.156
Huang, C. Q.; Yu, L.; Zhang, W.; Xiao, Q.; Zhou, J. Q.; Zhang, Y. L.; An, P. F.; Zhang, J.; Yu, Y. N-doped Ni-Mo based sulfides for high-efficiency and stable hydrogen evolution reaction. Appl. Catal. B 2020, 276, 119137.
doi: 10.1016/j.apcatb.2020.119137
Yuan, J.; Cheng, X.; Wang, H.; Lei, C.; Pardiwala, S.; Yang, B.; Li, Z.; Zhang, Q.; Lei, L.; Wang, S.; Hou, Y. A superaerophobic bimetallic selenides heterostructure for efficient industrial‑level oxygen evolution at ultra‑high current densities. Nanomicro. Lett. 2020, 12, 104.
Li, M.; Feng, L. NiSe2-CoS2 with a hybrid nanorods and nanoparticles structure for efficient oxygen evolution reaction. Chin. J. Struct. Chem. 2022, 41, 2201019-2201024.
Yan, T.; Zhang, X.; Liu, H.; Jin, Z. CeO2 particles anchored to Ni2P nanoplate for efficient photocatalytic hydrogen evolution. Chin. J. Struct. Chem. 2022, 41, 2201047-2201053.
Shi, Y.; Li, M.; Yu, Y.; Zhang, B. Recent advances in nanostructured transition metal phosphides: synthesis and energy-related applications. Energy Environ. Sci. 2020, 13, 4564-4582.
doi: 10.1039/D0EE02577A
Li, P.; Hong, W.; Liu, W. Fabrication of large scale self-supported WC/Ni(OH)2 electrode for high-current-density hydrogen evolution. Chin. J. Struct. Chem. 2021, 40, 1365-1371.
Han, N.; Yang, K. R.; Lu, Z.; Li, Y.; Xu, W.; Gao, T.; Cai, Z.; Zhang, Y.; Batista, V. S.; Liu, W.; Sun, X. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 2018, 9, 924.
doi: 10.1038/s41467-018-03429-z
Shu, X.; Chen, S.; Pan, W.; Zhang, J. Cobalt nitride embedded holey N-doped graphene as advanced bifunctional electrocatalysts for Zn-air batteries and overall water splitting. Carbon 2020, 157, 234-243.
doi: 10.1016/j.carbon.2019.10.023
Saad, A.; Shen, H.; Cheng, Z.; Arbi, R.; Guo, B.; Hui, L. S.; Liang, K.; Liu, S.; Attfield, J. P.; Turak, A.; Wang, J.; Yang, M. Mesoporous ternary nitrides of earth-abundant metals as oxygen evolution electrocatalyst. Nanomicro. Lett. 2020, 12, 79.
Guo, B. Y.; Zhang, X. Y.; Ma, X.; Chen, T. S.; Chen, Y.; Wen, M. L.; Qin, J. F.; Nan, J.; Chai, Y. M.; Dong, B. RuO2/Co3O4 nanocubes based on Ru ions impregnation into Prussian blue precursor for oxygen evolution. Inter. J. Hydrogen Energy 2020, 45, 9575-9582.
doi: 10.1016/j.ijhydene.2020.01.182
Xie, J. Y.; Fan, R. Y.; Fu, J. Y.; Zhen, Y. N.; Li, M. X.; Liu, H. J.; Ma, Y.; Wang, F. L.; Chai, Y. M.; Dong, B. Double doping of V and F on Co3O4 nanoneedles as efficient electrocatalyst for oxygen evolution. Int. J. Hydrogen Energy 2021, 46, 19962-19970.
doi: 10.1016/j.ijhydene.2021.03.141
Fu, C.; Wang, Y.; Huang, J. Hybrid of quaternary layered double hydroxides and carbon nanotubes for oxygen evolution reaction. Chin. J. Struct. Chem. 2020, 39, 1807-1816.
Li, R.; Xu, H.; Yang, P.; Wang, D.; Li, Y.; Xiao, L.; Lu, X.; Wang, B.; Zhang, J.; An, M. Synergistic interfacial and doping engineering of hetero-structured NiCo(OH)x-CoyW as an efficient alkaline hydrogen evolution electrocatalyst. Nanomicro. Lett. 2021, 13, 120.
Shi, L.; Chen, H.; Liang, X.; Liu, Y.; Zou, X. Theoretical insights into nonprecious oxygen-evolution active sites in Ti-Ir-based perovskite solid solution electrocatalysts. J. Mater. Chem. A 2020, 8, 218-223.
doi: 10.1039/C9TA10059H
Chen, D.; Qiao, M.; Liu, Y. R.; Hao, L.; Liu, D.; Dong, C. L.; Li, Y.; Wang, S. Preferential cation vacancies in perovskite hydroxide for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2018, 57, 8691-8696.
doi: 10.1002/anie.201805520
Chen, Y.; Li, H.; Wang, J.; Du, Y.; Xi, S.; Sun, Y.; Sherburne, M.; Ager, J. W.; Fisher, A. C.; Xu, Z. J. Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nat. Commun. 2019, 10, 572.
doi: 10.1038/s41467-019-08532-3
Guo, H. P.; Ruan, B. Y.; Luo, W. B.; Deng, J. Q.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Ultrathin and edge-enriched holey nitride nanosheets as bifunctional electrocatalysts for the oxygen and hydrogen evolution reactions. ACS Catal. 2018, 8, 9686-9696.
doi: 10.1021/acscatal.8b01821
Li, R. C.; Zhou, D.; Luo, J. X.; Xu, W. M.; Li, J. W.; Li, S. S.; Cheng, P. P.; Yuan, D. S. The urchin-like sphere arrays Co3O4 as a bifunctional catalyst for hydrogen evolution reaction and oxygen evolution reaction. J. Power Sources 2017, 341, 250-256.
doi: 10.1016/j.jpowsour.2016.10.096
Chen, H.; Zou, X. X. Intermetallic borides: structures, synthesis and applications in electrocatalysis. Inorg. Chem. Front. 2020, 7, 2248-2264.
doi: 10.1039/D0QI00146E
Gupta, S.; Patel, N.; Fernandes, R.; Kadrekar, R.; Dashora, A.; Yadav, A. K.; Bhattacharyya, D.; Jha, S. N.; Miotello, A.; Kothari, D. C. Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range. Appl. Catal. B 2016, 192, 126-133.
doi: 10.1016/j.apcatb.2016.03.032
Gupta, S.; Patel, N.; Miotello, A.; Kothari, D. C. Cobalt-boride: an efficient and robust electrocatalyst for hydrogen evolution reaction. J. Power Sources 2015, 279, 620-625.
doi: 10.1016/j.jpowsour.2015.01.009
Masa, J.; Andronescu, C.; Antoni, H.; Sinev, I.; Seisel, S.; Elumeeva, K.; Barwe, S.; Marti-Sanchez, S.; Arbiol, R. C.; Muhler, S. W. Role of boron and phosphorus in enhanced electrocatalytic oxygen evolution by nickel borides and nickel phosphides. ChemElectroChem 2019, 6, 235-240.
doi: 10.1002/celc.201800669
Hulm, J. K.; Matthias, B. T. New superconducting borides and nitrides. Phys. Rev. 1951, 82, 273-274.
doi: 10.1103/PhysRev.82.273
Hardy, G. F.; Hulm, J. K. The superconductivity of some transition metal compounds. Phys. Rev. 1954, 93, 1004-1016.
doi: 10.1103/PhysRev.93.1004
Chung, H. Y.; Weinberger, M. B.; Levine, J. B.; Kavner, A.; Yang, J. M.; Tolbert, S. H.; Kaner, R. B. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science 2007, 316, 436-438.
doi: 10.1126/science.1139322
Gabani, S.; Flachbart, K.; Siemensmeyer, K.; Mori, T. Magnetism and superconductivity of rare earth borides. J. Alloy. Compd. 2020, 821, 153201.
doi: 10.1016/j.jallcom.2019.153201
Sussardi, A.; Tanaka, T.; Khan, A. U.; Schlapbach, L.; Mori, T. Enhanced thermoelectric properties of samarium boride. J. Materiomics 2015, 1, 196-204.
doi: 10.1016/j.jmat.2015.07.007
Chen, Z. J.; Duan, X. G.; Wei, W.; Wang, S. B.; Zhang, Z. J.; Ni, B. J. Boride-based electrocatalysts: emerging candidates for water splitting. Nano Res. 2020, 13, 293-314.
doi: 10.1007/s12274-020-2618-y
Gupta, S.; Patel, M. K.; Miotello, A.; Patel, N. Metal boride-based catalysts for electrochemical water-splitting: a review. Adv. Funct. Mater. 2019, 30, 1906481.
Jiang, Y. Y.; Lu, Y. Z. Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting. Nanoscale 2020, 12, 9327-9351.
doi: 10.1039/D0NR01279C
Guo, F. F.; Wu, Y. Y.; Ai, X.; Chen, H.; Li, G. D.; Chen, W.; Zou, X. X. A class of metal diboride electrocatalysts synthesized by a molten salt-assisted reaction for the hydrogen evolution reaction. Chem. Commun. 2019, 55, 8627-8630.
doi: 10.1039/C9CC03638E
Chen, Y. L.; Yu, G. T.; Chen, W.; Liu, Y. P.; Li, G. D.; Zhu, P. W.; Tao, Q.; Li, Q. J.; Liu, J. W.; Shen, X. P.; Li, H.; Huang, X. R.; Wang, D. J.; Asefa, T.; Zou, X. X. Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 12370-12373.
doi: 10.1021/jacs.7b06337
Jothi, P. R.; Zhang, Y.; Yubuta, K.; Culver, D. B.; Conley, M.; Fokwa, B. P. T. Abundant vanadium diboride with graphene-like boron layers for hydrogen evolution. ACS Appl. Energy Mater. 2019, 2, 176-181.
doi: 10.1021/acsaem.8b01615
Park, C. H.; Zhang, Y.; Scheifers, J. P.; Jothi, P. R.; Encinas, A.; Fokwa, B. P. T. Graphene- and phosphorene-like boron layers with contrasting activities in highly active Mo2B4 for hydrogen evolution. J. Am. Chem. Soc. 2017, 139, 12915-12918.
doi: 10.1021/jacs.7b07247
Park, H.; Zhang, Y. M.; Lee, E.; Shankhari, P.; Fokwa, B. P. T. High-current-density HER electrocatalysts: graphene-like boron layer and tungsten as key ingredients in metal diborides. ChemSusChem 2019, 12, 3726-3731.
doi: 10.1002/cssc.201901301
Yuan, W. Y.; Zhao, X. S.; Hao, W. J.; Li, J. X.; Wang, L. C.; Ma, X. H.; Guo, Y. H. Performance of surface-oxidized Ni3B, Ni2B, and NiB2 electrocatalysts for overall water splitting. ChemElectroChem 2019, 6, 764-770.
doi: 10.1002/celc.201801354
Sun, J. K.; Zhang, W.; Wang, S. Y.; Ren, Y. B.; Liu, Q. Y.; Sun, Y. F.; Tang, L.; Guo, J. X.; Zhang, X. Ni-Co-B nanosheets coupled with reduced graphene oxide towards enhanced electrochemical oxygen evolution. J. Alloy. Compd. 2019, 776, 511-518.
doi: 10.1016/j.jallcom.2018.10.296
Chen, H. Y.; Ouyang, S.; Zhao, M.; Li, Y. X.; Ye, J. H. Synergistic activity of Co and Fe in amorphous Cox-Fe-B catalyst for efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 40333-40343.
doi: 10.1021/acsami.7b13939
Masa, J.; Piontek, S.; Wilde, P.; Antoni, H.; Eckhard, T.; Chen, Y. T.; Muhler, M.; Apfel, U. P.; Schuhmann, W. Ni-metalloid (B, Si, P, As, and Te) alloys as water oxidation electrocatalysts. Adv. Energy Mater. 2019, 9, 1900796.
Jiang, W. J.; Niu, S.; Tang, T.; Zhang, Q. H.; Liu, X. Z.; Zhang, Y.; Chen, Y. Y.; Li, J. H.; Gu, L.; Wan, L. J.; Hu, J. S. Crystallinity-modulated electrocatalytic activity of a nickel(II) borate thin layer on Ni3B for efficient water oxidation. Angew. Chem. Int. Ed. 2017, 56, 6572-6577.
doi: 10.1002/anie.201703183
Wang, N.; Xu, A.; Ou, P. F.; Hung, S. F.; Ozden, A.; Lu, Y. R.; Abed, J.; Wang, Z. Y.; Yan, Y.; Sun, M. J.; Xia, Y. J.; Han, M.; Han, J. R.; Yao, K. L.; Wu, F. Y.; Chen, P. H.; Vomiero, A.; Seifitokaldani, A.; Sun, X. H.; Sinton, D.; Liu, Y. C.; Sargent, E. H.; Liang, H. Y. Boride-derived oxygen-evolution catalysts. Nat. Commun. 2021, 12, 6089.
doi: 10.1038/s41467-021-26307-7
Li, J. H.; Chen, H.; Liu, Y. P.; Gao, R. Q.; Zou, X. X. In situ structural evolution of a nickel boride catalyst: synergistic geometric and electronic optimization for the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 5288-5294.
doi: 10.1039/C9TA00489K
Guo, F. F.; Wu, Y. Y.; Chen, H.; Liu, Y. P.; Yang, L.; Ai, X.; Zou, X. X. High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces. Energy Environ. Sci. 2019, 12, 684-692.
doi: 10.1039/C8EE03405B
Li, J.; Liu, Y.; Chen, H.; Zhang, Z.; Zou, X. Design of a multilayered oxygen-evolution electrode with high catalytic activity and corrosion resistance for saline water splitting. Adv. Funct. Mater. 2021, 31, 2101820.
doi: 10.1002/adfm.202101820
Wang, L. C.; Li, J. X.; Zhao, X. S.; Hao, W. J.; Ma, X. H.; Li, S. J.; Guo, Y. H. Surface-activated amorphous iron borides (FexB) as efficient electrocatalysts for oxygen evolution reaction. Adv. Mater. Interfaces 2019, 6, 1801690.
doi: 10.1002/admi.201801690
Gong, Z. C.; Liu, R.; Gong, H. S.; Ye, G. L.; Liu, J. J.; Dong, J. C.; Liao, J. W.; Yan, M. M.; Liu, J. B.; Huang, K.; Xing, L. L.; Liang, J. F.; He, Y. M.; Fei, H. L. Constructing a graphene-encapsulated amorphous/crystalline heterophase NiFe alloy by microwave thermal shock for boosting the oxygen evolution reaction. ACS. Catal. 2021, 11, 12284-12292.
doi: 10.1021/acscatal.1c03333
Sun, H. M.; Xu, X. B.; Yan, Z. H.; Chen, X.; Jiao, L. F.; Cheng, F. Y.; Chen, J. Superhydrophilic amorphous Co-B-P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 22062-22069.
doi: 10.1039/C8TA02999G
He, T.; Nsanzimana, J. M. V.; Qi, R. J.; Zhang, J. Y.; Miao, M.; Yan, Y.; Qi, K.; Liu, H. F.; Xia, B. Y. Synthesis of amorphous boride nanosheets by the chemical reduction of prussian blue analogs for efficient water electrolysis. J. Mater. Chem. A 2018, 6, 23289-23294.
doi: 10.1039/C8TA09609K
Masa, J.; Weide, P.; Peeters, D.; Sinev, I.; Xia, W.; Sun, Z. Y.; Somsen, C.; Muhler, M.; Schuhmann, W. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution. Adv. Energy Mater. 2016, 6, 1502313.
doi: 10.1002/aenm.201502313
Xu, N.; Cao, G. X.; Chen, Z. J.; Kang, Q.; Dai, H. B.; Wang, P. Cobalt nickel boride as an active electrocatalyst for water splitting. J. Mater. Chem. A 2017, 5, 12379-12384.
doi: 10.1039/C7TA02644G
Cao, G. X.; Xu, N.; Chen, Z. J.; Kang, Q.; Dai, H. B.; Wang, P. Cobalt-tungsten-boron as an active electrocatalyst for water electrolysis. ChemistrySelect. 2017, 2, 6187-6193.
doi: 10.1002/slct.201701459
Jiang, J.; Wang, M.; Yan, W. S.; Liu, X. F.; Liu, J. X.; Yang, J. L.; Sun, L. C. Highly active and durable electrocatalytic water oxidation by a NiB0.45/NiOx core-shell heterostructured nanoparticulate film. Nano Energy 2017, 38, 175-184.
doi: 10.1016/j.nanoen.2017.05.045
Masa, J.; Sinev, I.; Mistry, H.; Ventosa, E.; Mata, M.; Arbiol, J.; Muhler, M.; Roldan, C. B.; Schuhmann, W. Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution. Adv. Energy Mater. 2017, 7, 1700381.
doi: 10.1002/aenm.201700381
Park, H.; Encinas, A.; Scheifers, J. P.; Zhang, Y. M.; Fokwa, B. P. T. Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 2017, 56, 5575-5578.
doi: 10.1002/anie.201611756
Li, H.; Wen, P.; Li, Q.; Dun, C.; Xing, J.; Lu, C.; Adhikari, S.; Jiang, L.; Carroll, D. L.; Geyer, S. M. Earth-abundant iron diboride (FeB2) nanoparticles as highly active bifunctional electrocatalysts for overall water splitting. Adv. Energy Mater. 2017, 7, 1700513.
doi: 10.1002/aenm.201700513
Zhang, R. Q.; Liu, H. X.; Wang, C. F.; Wang, L. C.; Yang, Y. J.; Guo, Y. H. Electroless plating of transition metal boride with high boron content as superior HER electrocatalyst. ChemCatChem 2020, 12, 3068-3075.
doi: 10.1002/cctc.202000315
Ma, X. Z.; Wen, J.; Zhang, S.; Yuan, H. R.; Li, K. Y.; Yan, F.; Zhang, X. T.; Chen, Y. J. Crystal CoxB (x = 1-3) synthesized by a ball-milling method as high-performance electrocatalysts for the oxygen evolution reaction. ACS Sustain. Chem. Eng. 2017, 5, 10266-10274.
doi: 10.1021/acssuschemeng.7b02281
Ai, X.; Zou, X.; Chen, H.; Su, Y. T.; Feng, X. L.; Li, Q. J.; Liu, Y. P.; Zhang, Y.; Zou, X. X. Transition-metal-boron intermetallics with strong interatomic d-sp orbital hybridization for high-performance electrocatalysis. Angew. Chem. Int. Ed. 2020, 59, 3961-3965.
doi: 10.1002/anie.201915663
Zou, X.; Wang, L.; Ai, X.; Chen, H.; Zou, X. X. Crystal phase-dependent electrocatalytic hydrogen evolution performance of ruthenium-boron intermetallics. Chem. Commun. 2020, 56, 3061-3064.
doi: 10.1039/D0CC00070A
Xu, Q. C.; Liu, Y.; Jiang, H.; Hu, Y. J.; Liu, H. L.; Li, C. Z. Unsatu-rated sulfur edge engineering of strongly coupled MoS2 nanosheet-carbon macroporous hybrid catalyst for enhanced hydrogen generation. Adv. Energy Mater. 2019, 9, 1802553.
doi: 10.1002/aenm.201802553
Dinca, M.; Surendranath, Y.; Nocera, D. G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. PNAS 2010, 107, 10337-10341.
doi: 10.1073/pnas.1001859107
Surendranath, Y.; Dinca, M.; Nocera, D. G. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J. Am. Chem. Soc. 2009, 131, 2615-2620.
doi: 10.1021/ja807769r
Nsanzimana, J. M. V.; Peng, Y. C.; Xu, Y. Y.; Thia, L.; Wang, C.; Xia, B. Y.; Wang, X. An efficient and earth-abundant oxygen-evolving electrocatalyst based on amorphous metal borides. Adv. Energy Mater. 2018, 8, 1701475.
doi: 10.1002/aenm.201701475
Zhang, J.; Li, X. X.; Liu, Y. T.; Zeng, Z. W.; Cheng, X.; Wang, Y. D.; Tu, W. M.; Pan, M. Bi-metallic boride electrocatalysts with enhanced activity for the oxygen evolution reaction. Nanoscale 2018, 10, 11997-12002.
doi: 10.1039/C8NR02198H
Gupta, S.; Patel, N.; Fernandes, R.; Hanchate, S.; Miotello, A.; Kothari, D. C. Co-Mo-B nanoparticles as a non-precious and efficient bifunctional electrocatalyst for hydrogen and oxygen evolution. Electrochim. Acta 2017, 232, 64-71.
doi: 10.1016/j.electacta.2017.02.100
Schuch, J.; Klemenz, S.; Schuldt, P.; Zieschang, A. M.; Dolique, S.; Connor, P.; Kaiser, B.; Kramm, U. I.; Albert, B.; Jaegermann, W. Efficient oxygen evolution electrocatalyst by incorporation of nickel into nanoscale dicobalt boride. ChemCatChem 2021, 13, 1772-1780.
doi: 10.1002/cctc.202002030
Yang, Y. S.; Zhuang, L. Z.; Rufford, T. E.; Wang, S. B.; Zhu, Z. H. Efficient water oxidation with amorphous transition metal boride catalysts synthesized by chemical reduction of metal nitrate salts at room temperature. RSC Adv. 2017, 7, 32923-32930.
doi: 10.1039/C7RA02558K
Guo, Y. H.; Zhang, R. Q.; Hao, W. J.; Zhang, J. K.; Yang, Y. J. Multifunctional Co-B-O@CoxB catalysts for efficient hydrogen generation. Int. J. Hydrogen Energy 2020, 45, 380-390.
doi: 10.1016/j.ijhydene.2019.09.008
Zeng, M.; Wang, H.; Zhao, C.; Wei, J. K.; Qi, K.; Wang, W. L.; Bai, X. D. Nanostructured amorphous nickel boride for high-efficiency electrocatalytic hydrogen evolution over a broad pH range. ChemCatChem 2016, 8, 708-712.
doi: 10.1002/cctc.201501221
Wang, C.; Zhai, P. L.; Xia, M. Y.; Wu, Y. Z.; Zhang, B.; Li, Z. W.; Ran, L.; Gao, J. F.; Zhang, X. M.; Fan, Z. Z.; Sun, L. C.; Hou, J. G. Engineering lattice oxygen activation of iridium clusters stabilized on amorphous bimetal borides array for oxygen evolution reaction. Angew. Chem. Int. Ed. 2021, 60, 27126-27134.
doi: 10.1002/anie.202112870
Li, Y.; Jiang, X. L.; Tang, M. Y.; Zheng, Q. J.; Huo, Y.; Xie, F. Y.; Lin, D. M. A high-performance oxygen evolution electrocatalyst based on partially amorphous bimetallic cobalt iron boride nanosheet. Int. J. Hydrogen Energy 2020, 45, 28586-28597.
doi: 10.1016/j.ijhydene.2020.07.140
Hao, W. J.; Wu, R. B.; Zhang, R. Q.; Ha, Y.; Chen, Z. L.; Wang, L. C.; Yang, Y. J.; Ma, X. H.; Sun, D. L.; Fang, F.; Guo, Y. H. Electroless plating of highly efficient bifunctional boride-based electrodes toward practical overall water splitting. Adv. Energy Mater. 2018, 8, 1801372.
doi: 10.1002/aenm.201801372
Chen, Z. J.; Kang, Q.; Cao, G. X.; Xu, N.; Dai, H. B.; Wang, P. Study of cobalt boride-derived electrocatalysts for overall water splitting. Int. J. Hydrogen Energy 2018, 43, 6076-6087.
doi: 10.1016/j.ijhydene.2018.01.161
Zhang, P. L.; Wang, M.; Yang, Y.; Yao, T. Y.; Han, H. X.; Sun, L. C. Electroless plated Ni-B films as highly active electrocatalysts for hydrogen production from water over a wide pH range. Nano Energy 2016, 19, 98-107.
doi: 10.1016/j.nanoen.2015.11.020
Yang, Y.; Wang, M.; Zhang, P. L.; Wang, W. H.; Han, H. X.; Sun, L. C. Evident enhancement of photoelectrochemical hydrogen production by electroless deposition of M-B (M = Ni, Co) catalysts on silicon nanowire arrays. ACS Appl. Mater. Interfaces 2016, 8, 30143-30151.
doi: 10.1021/acsami.6b09600
Kim, J.; Kim, H.; Kim, S. K.; Ahn, S. H. Electrodeposited amorphous Co-P-B ternary catalyst for hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 6282-6288.
doi: 10.1039/C7TA11033B
Wu, Y. H.; Gao, Y.; He, H. W.; Zhang, P. Novel electrocatalyst of nickel sulfide boron coating for hydrogen evolution reaction in alkaline solution. Appl. Surf. Sci. 2019, 480, 689-696.
doi: 10.1016/j.apsusc.2019.03.025
Mann, D. K.; Xu, J.; Mordvinova, N. E.; Yannello, V.; Ziouani, Y.; Gonzalez-Ballesteros, N.; Sousa, J. P. S.; Lebedev, O. I.; Kolen'ko, Y. V.; Shatruk, M. Electrocatalytic water oxidation over AlFe2B2. Chem. Sci. 2019, 10, 2796-2804.
doi: 10.1039/C8SC04106G
Lee, E.; Park, H.; Joo, H.; Fokwa, B. P. T. Unexpected correlation between boron chain condensation and hydrogen evolution reaction (HER) activity in highly active vanadium borides: enabling predictions. Angew. Chem. Int. Ed. 2020, 59, 11774-11778.
doi: 10.1002/anie.202000154
Carenco, S.; Portehault, D.; Boissiere, C.; Mezailles, N.; Sanchez, C. Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem. Rev. 2013, 113, 7981-8065.
doi: 10.1021/cr400020d
Li, Q. J.; Zou, X.; Ai, X.; Chen, H.; Sun, L.; Zou, X. X. Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity. Adv. Energy Mater. 2019, 9, 1803369.
Jothi, P. R.; Zhang, Y. M.; Scheifers, J. P.; Park, H.; Fokwa, B. P. T. Molybdenum diboride nanoparticles as a highly efficient electrocatalyst for the hydrogen evolution reaction. Sustain. Energy Fuels 2017, 1, 1928-1934.
doi: 10.1039/C7SE00397H
Jothi, P. R.; Yubuta, K.; Fokwa, B. P. T. A simple, general synthetic route toward nanoscale transition metal borides. Adv. Mater. 2018, 30, 1704181.
doi: 10.1002/adma.201704181
Xiao, M.; Zhang, L.; Luo, B.; Lyu, M.; Wang, Z. L.; Huang, H. M.; Wang, S. C.; Du, A. J.; Wang, L. Z. Molten-salt-mediated synthesis of an atomic nickel Co-catalyst on TiO2 for improved photocatalytic H2 evolution. Angew. Chem. Int. Ed. 2020, 59, 7230-7234.
doi: 10.1002/anie.202001148
Wang, F. G.; Liu, B.; Wang, H. Y.; Lin, Z. Y.; Dong, Y. W.; Yu, N.; Luan, R. N.; Chai, Y. M.; Dong, B. Motivating borate doped FeNi layered double hydroxides by molten salt method toward efficient oxygen evolution. J. Colloid Interface Sci. 2022, 610, 173-181.
doi: 10.1016/j.jcis.2021.12.031
Zhou, Y. N.; Wang, F. L.; Dou, S. Y.; Shi, Z. N.; Dong, B.; Yu, W. L.; Zhao, H. Y.; Wang, F. G.; Yu, J. F.; Chai, Y. M. Motivating high-valence Nb doping by fast molten salt method for NiFe hydroxides toward efficient oxygen evolution reaction. Chem. Eng. J. 2022, 427, 131643.
doi: 10.1016/j.cej.2021.131643
Wang, X. F.; Tai, G. A.; Wu, Z. H.; Hu, T. S.; Wang, R. Ultrathin molybdenum boride films for highly efficient catalysis of the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 23471-23475.
doi: 10.1039/C7TA08597D
Chen, X. C.; Yu, Z. X.; Wei, L.; Zhou, Z.; Zhai, S. L.; Chen, J. S.; Wang, Y. Q.; Huang, Q. W.; Karahan, H. E.; Liao, X. Z.; Chen, Y. Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2019, 7, 764-774.
doi: 10.1039/C8TA09130G
Cao, X. Y.; Cui, L.; Wang, X. X.; Yang, W. R.; Liu, J. Q. Nickel-borate/reduced graphene oxide nanohybrid: a robust and efficient electrocatalyst for oxygen evolution reaction in alkaline and near neutral media. ChemCatChem 2018, 10, 2826-2832.
doi: 10.1002/cctc.201800312
Chen, P. Z.; Xu, K.; Zhou, T. P.; Tong, Y.; Wu, J. C.; Cheng, H.; Lu, X. L.; Ding, H.; Wu, C. Z.; Xie, Y. Strong-coupled cobalt borate nanosheets/graphene hybrid as electrocatalyst for water oxidation under both alkaline and neutral conditions. Angew. Chem. 2016, 128, 2534-2538.
doi: 10.1002/ange.201511032
Wang, F. G.; Liu, B.; Lin, Z. Y.; Liu, X.; Ma, Y.; Zhou, Y. L.; Yu, J. F.; Chai, Y. M.; Dong, B. Constructing partially amorphous borate doped iron-nickel nitrate hydroxide nanoarrays by rapid microwave activation for oxygen evolution. Appl. Surf. Sci. 2022, 592, 153245.
doi: 10.1016/j.apsusc.2022.153245
Sun, J. Q.; Yang, D. J.; Lowe, S.; Zhang, L. J.; Wang, Y. Z.; Zhao, S. L.; Liu, P. R.; Wang, Y.; Tang, Z. Y.; Zhao, H. J.; Yao, X. D. Sandwich‐like reduced graphene oxide/carbon black/amorphous cobalt borate nanocomposites as bifunctional cathode electrocatalyst in rechargeable zinc‐air batteries. Adv. Energy Mater. 2018, 8, 1801495.
doi: 10.1002/aenm.201801495
Yang, L. B.; Liu, D. N.; Hao, S.; Kong, R. M.; Asiri, A. M.; Zhang, C. X.; Sun, X. P. A cobalt-borate nanosheet array: an efficient and durable non-noble-metal electrocatalyst for water oxidation at near neutral pH. J. Mater. Chem. A 2017, 5, 7305-7308.
doi: 10.1039/C7TA00982H
Ji, X. Q.; Cui, L.; Liu, D. N.; Hao, S.; Liu, J. Q.; Qu, F. L.; Ma, Y. J.; Du, G.; Asiri, A. M.; Sun, X. P. A nickel-borate nanoarray: a highly active 3D oxygen-evolving catalyst electrode operating in near-neutral water. Chem. Commun. 2017, 53, 3070-3073.
doi: 10.1039/C6CC09893B
Ma, M.; Qu, F. L.; Ji, X. Q.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Yao, Y. D.; Chen, L.; Sun, X. P. Bimetallic nickel-substituted cobalt-borate nanowire array: an earth-abundant water oxidation electrocatalyst with superior activity and durability at near neutral pH. Small 2017, 13, 1700394.
doi: 10.1002/smll.201700394
Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.
doi: 10.1002/adma.201806326
She, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: insights into materials design. Science 2017, 355, 146.
Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practicalelectrocatalysts. Angew. Chem. Int. Ed. 2018, 57, 7568-7579.
doi: 10.1002/anie.201710556
Peng, L. S.; Zheng, X. Q.; Li, L.; Zhang, L.; Yang, N.; Xiong, K.; Chen, H. M.; Li, J.; Wei, Z. D. Chimney effect of the interface in metal oxide/metal composite catalysts on the hydrogen evolution reaction. Appl. Catal. B 2019, 245, 122-129.
doi: 10.1016/j.apcatb.2018.12.035
Zhao, Z. P.; Liu, H. T.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9046-9050.
doi: 10.1021/jacs.8b04770
Li, Y. X.; Zhang, W. Z.; Li, H.; Yang, T. Y.; Peng, S. Q.; Kao, C.; Zhang, W. Y. Ni-B coupled with borate-intercalated Ni(OH)2 for efficient and stable electrocatalytic and photocatalytic hydrogen evolution under low alkalinity. Chem. Eng. J. 2020, 394, 124928.
doi: 10.1016/j.cej.2020.124928
Bao, X. H.; Li, Y. T.; Wang, J.; Zhong, Q. Amorphous‐crystalline Co-B-P catalyst for synergistically enhanced hydrogen evolution reaction. ChemCatChem 2020, 12, 6259-6264.
doi: 10.1002/cctc.202001343
Han, H.; Choi, H.; Mhin, S.; Hong, Y. R.; Kim, K. M.; Kwon, J.; Ali, G.; Chung, K. Y.; Je, M.; Umh, H. N.; Lim, D. H.; Davey, K.; Qiao, S. Z.; Paik, U.; Song, T. Advantageous crystalline-amorphous phase boundary for enhanced electrochemical water oxidation. Energy Environ. Sci. 2019, 12, 2443-2454.
doi: 10.1039/C9EE00950G
Vrubel, H.; Hu, X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem. Int. Ed. 2012, 51, 12703-12706.
doi: 10.1002/anie.201207111
Zhuang, Z. C.; Li, Y.; Li, Z. L.; Lv, F.; Lang, Z. Q.; Zhao, K. N.; Zhou, L.; Moskaleva, L.; Guo, S. J.; Mai, L. Q. MoB/g-C3N4 interface materials as a schottky catalyst to boost hydrogen evolution. Angew. Chem. Int. Ed. 2018, 57, 496-500.
doi: 10.1002/anie.201708748
Li, Q.; Wang, L. N.; Ai, X.; Chen, H.; Zou, J. Y.; Li, G. D.; Zou, X. X. Multiple crystal phases of intermetallic tungsten borides and phase-dependent electrocatalytic property for hydrogen evolution. Chem. Commun. 2020, 56, 13983-13986.
doi: 10.1039/D0CC06072K
Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R. H.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Interface engineering of MoS2/Ni3S2 hetero-structures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. Int. Ed. 2016, 55, 6702-6707.
doi: 10.1002/anie.201602237
Diao, J. X.; Qiu, Y.; Liu, S. Q.; Wang, W. T.; Chen, K.; Li, H. L.; Yuan, W. Y.; Qu, Y. T.; Guo, X. H. Interfacial engineering of W2N/WC hetero-structures derived from solid-state synthesis: a highly efficient trifunctional electrocatalyst for ORR, OER, and HER. Adv. Mater. 2020, 32, 1905679.
doi: 10.1002/adma.201905679
Huang, H. W.; Jung, H.; Jun, H.; Woo, D. Y.; Han, J. W.; Lee, J. Design of grain boundary enriched bimetallic borides for enhanced hydrogen evolution reaction. Chem. Eng. J. 2021, 405, 126977.
doi: 10.1016/j.cej.2020.126977
Lao, J.; Li, D.; Jiang, C. L.; Luo, C. H.; Qi, R. J.; Lin, H. C.; Huang, R.; Waterhouse, G. I. N.; Peng, H. Synergistic effect of cobalt boride nanoparticles on MoS2 nanoflowers for a highly efficient hydrogen evolution reaction in alkaline media. Nanoscale 2020, 12, 10158-10165.
doi: 10.1039/C9NR10230B
Ren, Y. M.; Wang, J. J.; Hu, W. J.; Wen, H.; Qiu, Y. P.; Tang, P. P.; Chen, M. H.; Wang, P. Hierarchical nanostructured Co-Mo-B/CoMoO4-x amorphous composite for the alkaline hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2021, 13, 42605-42612.
doi: 10.1021/acsami.1c08350
Lin, Q.; Shang, C. Q.; Chen, Z. H.; Wang, X.; Zhou, G. F. Boron-doped molybdenum carbide as a pH-independent electrocatalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 30659-30665.
doi: 10.1016/j.ijhydene.2020.08.033
Cao, E. P.; Chen, Z. M.; Wu, H.; Yu, P.; Wang, Y.; Xiao, F.; Chen, S.; Du, S. C.; Xie, Y.; Wu, Y.; Ren, Z. Y. Boron-induced electronic-structure reformation of CoP nanoparticles drives enhanced pH-universal hydrogen evolution. Angew. Chem. Int. Ed. 2020, 59, 4154-4160.
doi: 10.1002/anie.201915254
Wu, J.; Zhang, Q.; Shen, K.; Zhao, R.; Zhong, W. D.; Yang, C. F.; Xiang, H.; Li, X. K.; Yang, N. J. Modulating interband energy separation of boron-doped Fe7S8/FeS2 electrocatalysts to boost alkaline hydrogen evolution reaction. Adv. Funct. Mater. 2021, 32, 2107802.
Liu, M. Y.; He, Q.; Huang, S. W.; Zou, W. H.; Cong, J.; Xiao, X. Q.; Li, P.; Cai, J. G.; Hou, L. X. NiCo-layered double hydroxide-derived B-doped CoP/Ni2P hollow nanoprisms as high-efficiency electrocatalysts for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2021, 13, 9932-9941.
doi: 10.1021/acsami.0c20294
Yang, H. Y.; Chen, Z. L.; Guo, P. F.; Fei, B.; Wu, R. B. B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction. Appl. Catal. B 2020, 261, 118240.
doi: 10.1016/j.apcatb.2019.118240
Ye, S. H.; Luo, F. Y.; Xu, T. T.; Zhang, P. Y.; Shi, H. D.; Qin, S. Q.; Wu, J. P.; He, C. X.; Ouyang, X. P.; Zhang, Q. L.; Liu, J. H.; Sun, X. L. Boosting the alkaline hydrogen evolution of Ru nanoclusters anchored on B/N-doped graphene by accelerating water dissociation. Nano Energy 2020, 68, 104301.
doi: 10.1016/j.nanoen.2019.104301
Bat-Erdene, M.; Batmunkh, M.; Sainbileg, B.; Hayashi, M.; Bati, A. S. R.; Qin, J. D.; Zhao, H. J.; Zhong, Y. L.; Shapter, J. G. Highly dispersed Ru nanoparticles on boron-doped Ti3C2Tx (MXene) nanosheets for synergistic enhancement of electrocatalytic hydrogen evolution. Small 2021, 17, 2102218.
doi: 10.1002/smll.202102218
Zhao, X.; Zheng, M.; Zhang, Z. Y.; Wang, Y. F.; Zhou, Y. T.; Zhou, X. H.; Zhang, H. B. Supramolecular nanosheet evolution into BC3N matrix improves the hydrogen evolution reaction activity in the pH universality of highly dispersed Pt nanoparticles. J. Mater. Chem. A 2021, 9, 16427-16435.
doi: 10.1039/D1TA04142H
Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. C. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196-2214.
doi: 10.1039/C9CS00607A
Gupta, S.; Jadhav, H.; Sinha, S.; Miotello, A.; Patel, M. K.; Sarkar, A.; Patel, N. Cobalt-boride nanostructured thin films with high performance and stability for alkaline water oxidation. ACS Sustain. Chem. Eng. 2019, 7, 16651-16658.
doi: 10.1021/acssuschemeng.9b03995
Liang, X. G.; Dong, R. T.; Li, D. P.; Bu, X. M.; Li, F. Z.; Shu, L.; Wei, R. J.; Ho, J. Coupling of nickel boride and Ni(OH)2 nanosheets with hierarchical interconnected conductive porous structure synergizes the oxygen evolution reaction. ChemCatChem 2018, 10, 4555-4561.
doi: 10.1002/cctc.201800993
Hong, Y. R.; Kim, K. M.; Ryu, J. H.; Mhin, S.; Kim, J.; Ali, G.; Chung, K. Y.; Kang, S.; Han, H. Dual-phase engineering of nickel boride-hydroxide nanoparticles toward high-performance water oxidation electrocatalysts. Adv. Funct. Mater. 2020, 30, 2004330.
doi: 10.1002/adfm.202004330
Leng, X.; Wu, K. H.; Su, B. J.; Jang, L. Y.; Gentle, I.; Wang, D. W. Hydrotalcite-wrapped Co-B alloy with enhanced oxygen evolution activity. Chin. J. Catal. 2017, 38, 1021-1027.
doi: 10.1016/S1872-2067(17)62811-0
Xie, C.; Wang, Y. Y.; Yan, D. F.; Tao, L.; Wang, S. Y. In situ growth of cobalt@cobalt-borate core-shell nanosheets as highly-efficient electrocatalysts for oxygen evolution reaction in alkaline/neutral medium. Nanoscale 2017, 9, 16059-16065.
doi: 10.1039/C7NR06054H
Chen, S.; Li, Y. Q.; Zhang, Z. H.; Fu, Q.; Bao, X. H. The synergetic effect of h-BN shells and subsurface B in CoBx@h-BN nanocatalysts for enhanced oxygen evolution reactions. J. Mater. Chem. A 2018, 6, 10644-10648.
doi: 10.1039/C8TA02312C
Zou, S. H.; Burke, M.; Kast, M.; Fan, J.; Danilovic, N.; Boettcher, S. Fe (Oxy)hydroxide oxygen evolution reaction electrocatalysis: intrinsic activity and the roles of electrical conductivity, substrate, and dissolution. Chem. Mater. 2015, 27, 8011-8020.
doi: 10.1021/acs.chemmater.5b03404
Liu, Q. H.; Zhao, H.; Jiang, M.; Kang, Q.; Zhou, W.; Wang, P. C.; Zhou, F. M. Boron enhances oxygen evolution reaction activity over Ni foam-supported iron boride nanowires. J. Mater. Chem. A 2020, 8, 13638-13645.
doi: 10.1039/C9TA14256H
Yuan, H. F.; Wang, S. M.; Gu, X. D.; Tang, B.; Li, J. P.; Wang, X. G. One-step solid-phase boronation to fabricate self-supported porous FeNiB/FeNi foam for efficient electrocatalytic oxygen evolution and overall water splitting. J. Mater. Chem. A 2019, 7, 19554-19564.
doi: 10.1039/C9TA04076E
Ren, H.; Sun, X. L.; Du, C. F.; Zhao, J.; Liu, D. B.; Fang, W.; Kumar, S.; Chua, R.; Meng, S.; Kidkhunthod, P.; Song, L.; Li, S. Q.; Madhavi, S.; Yan, Q. Y. Amorphous Fe-Ni-P-B-O nanocages as efficient electrocatalysts for oxygen evolution reaction. ACS Nano. 2019, 13, 12969-12979.
doi: 10.1021/acsnano.9b05571
Ji, X. Q.; Ren, X.; Hao, S.; Xie, F. Y.; Qu, F. L.; Du, G.; Asiri, A.; Sun, X. P. Remarkable enhancement of the alkaline oxygen evolution reaction activity of NiCo2O4 by an amorphous borate shell. Inorg. Chem. Front. 2017, 4, 1546-1550.
doi: 10.1039/C7QI00340D
Gorlin, M.; Ferreira de Araujo, J.; Schmies, H.; Bernsmeier, D.; Dresp, S.; Gliech, M.; Jusys, Z.; Chernev, P.; Kraehnert, R.; Dau, H.; Strasser, P. Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH. J. Am. Chem. Soc. 2017, 139, 2070-2082.
doi: 10.1021/jacs.6b12250
Nsanzimana, J. M. V.; Gong, L. Q.; Dangol, R.; Reddu, V.; Jose, V.; Xia, B. Y.; Yan, Q. Y.; Lee, J. M.; Wang, X. Tailoring of metal boride morphology via anion for efficient water oxidation. Adv. Energy Mater. 2019, 9, 1901503.
doi: 10.1002/aenm.201901503
Chen, H. Y.; Chen, J. X.; Ning, P.; Chen, X.; Liang, J. H.; Yao, X.; Chen, D.; Qin, L. S.; Huang, Y. X.; Wen, Z. H. 2D heterostructure of amorphous CoFeB coating black phosphorus nanosheets with optimal oxygen intermediate absorption for improved electrocatalytic water oxidation. ACS Nano. 2021, 15, 12418-12428.
doi: 10.1021/acsnano.1c04715
Mao, H.; Guo, X.; Fu, Y. L.; Yang, H. R.; Zhang, Y.; Zhang, R.; Song, X. M. Enhanced electrolytic oxygen evolution by the synergistic effects of trimetallic FeCoNi boride oxides immobilized on polypyrrole/reduced graphene oxide. J. Mater. Chem. A 2020, 8, 1821-1828.
doi: 10.1039/C9TA10756H
Chua, X. J.; Luxa, J.; Eng, A. Y. S.; Tan, S. M.; Sofer, Z.; Pumera, M. Negative electrocatalytic effects of p-doping niobium and tantalum on MoS2 and WS2 for the hydrogen evolution reaction and oxygen reduction reaction. ACS Catal. 2016, 6, 5724-5734.
doi: 10.1021/acscatal.6b01593
Haq, T.; Mansour, S. A.; Munir, A.; Haik, Y. Gold-supported gadolinium doped CoB amorphous sheet: a new benchmark electrocatalyst for water oxidation with high turnover frequency. Adv. Func. Mater. 2020, 30, 1910309.
doi: 10.1002/adfm.201910309
Kwon, J.; Han, H.; Jo, S.; Choi, S.; Chung, K. Y.; Ali, G.; Park, K.; Paik, U.; Song, T. Amorphous nickel-iron borophosphate for a robust and efficient oxygen evolution reaction. Adv. Energy Mater. 2021, 11, 2100624.
doi: 10.1002/aenm.202100624
Sun, S.; Zhai, T.; Liang, C. L.; Savilov, S. V.; Xia, H. Boosted crystalline/amorphous Fe2O3-δ core/shell heterostructure for flexible solid-state pseudocapacitors in large scale. Nano Energy 2018, 45, 390-397.
doi: 10.1016/j.nanoen.2018.01.015
Wu, L. B.; Yu, L.; Zhu, Q. C.; McElhenny, B.; Zhang, F. H.; Wu, C. Z.; Xing, X. X.; Bao, J. M.; Chen, S.; Ren, Z. F. Boron-modified cobalt iron layered double hydroxides for high efficiency seawater oxidation. Nano Energy 2021, 83, 105838.
doi: 10.1016/j.nanoen.2021.105838
Zhang, K.; Zhang, G.; Qu, J. H.; Liu, H. J. Disordering the atomic structure of Co(II) oxide via B-doping: an efficient oxygen vacancy introduction approach for high oxygen evolution reaction electrocatalysts. Small 2018, 14, 1802760.
doi: 10.1002/smll.201802760
Cheng, Z. F.; Pi, Y. C.; Shao, Q.; Huang, X. Q. Boron-doped amorphous iridium oxide with ultrahigh mass activity for acidic oxygen evolution reaction. Sci. China Mater. 2021, 64, 2958-2966.
doi: 10.1007/s40843-021-1687-5
Zuo, Y. P.; Rao, D. W.; Ma, S. N.; Li, T. T.; Tsang, Y. H.; Kment, S.; Chai, Y. Valence engineering via dual-cation and boron doping in pyrite selenide for highly efficient oxygen evolution. ACS Nano. 2019, 13, 11469-11476.
doi: 10.1021/acsnano.9b04956
Jiang, Z. Q.; Jiang, Z. J.; Maiyalagan, T.; Manthiram, A. Cobalt oxide-coated N- and B-doped graphene hollow spheres as bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions. J. Mater. Chem. A 2016, 4, 5877-5889.
doi: 10.1039/C6TA01349J
Glavin, N.; Muratore, C.; Jespersen, M.; Hu, J.; Hagerty, P.; Hilton, A. M.; Blake, A. T.; Grabowski, C. A.; Durstock, M.; McConney, M.; Hilgefort, D.; Fisher, T. S.; Voevodin, A. Amorphous boron nitride: a universal, ultrathin dielectric for 2D nanoelectronics. Adv. Funct. Mater. 2016, 26, 2640-2647.
doi: 10.1002/adfm.201505455
Liu, H.; Zhang, X. H.; Li, Y. X.; Li, X.; Dong, C. K.; Wu, D. Y.; Tang, C. C.; Chou, S. L.; Fang, F.; Du, X. W. Conductive boron nitride as promising catalyst support for the oxygen evolution reaction. Adv. Energy Mater. 2020, 10, 1902521.
doi: 10.1002/aenm.201902521
Liu, X. X.; Wang, Y. H.; Chen, L. B.; Chen, P. P.; Jia, S. P.; Zhang, Y.; Zhou, S. Y.; Zang, J. B. Co2B and Co nanoparticles immobilized on the N-B-doped carbon derived from nano-B4C for efficient catalysis of oxygen evolution, hydrogen evolution, and oxygen reduction reactions. ACS Appl. Mater. Interfaces 2018, 10, 37067-37078.
doi: 10.1021/acsami.8b13359
Zhao, W. N.; Xu, T.; Li, T.; Wang, Y. K.; Liu, H.; Feng, J. Z.; Ding, S. J.; Li, Z. T.; Wu, M. B. Amorphous iron(III)-borate nanolattices as multifunctional electrodes for self-driven overall water splitting and rechargeable zinc-air battery. Small 2018, 14, 1802829.
doi: 10.1002/smll.201802829
Tian, R. F.; Zhao, S. J.; Li, J. K.; Chen, Z. B.; Peng, W. F.; He, Y.; Zhang, L. L.; Yan, S.; Wu, L. L.; Ahuja, R.; Gou, H. Y. Pressure-promoted highly-ordered Fe-doped-Ni2B for effective oxygen evolution reaction and overall water splitting. J. Mater. Chem. A 2021, 9, 6469-6475.
doi: 10.1039/D0TA10010B
Saad, A.; Gao, Y.; Owusu, K. A.; Liu, W.; Wu, Y. Y.; Ramiere, A.; Guo, H. C.; Tsiakaras, P.; Cai, X. K. Ternary Mo2NiB2 as a superior bifunctional electrocatalyst for overall water splitting. Small 2022, 18, 2104303.
doi: 10.1002/smll.202104303
Xu, Y. L.; Wang, C.; Huang, Y. H.; Fu, J. Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy 2021, 80, 105545.
doi: 10.1016/j.nanoen.2020.105545
Liu, H. X.; Li, X. Y.; Chen, L. L.; Zhu, X. D.; Dong, P.; Chee, M. O. L.; Ye, M. X.; Guo, Y. H.; Shen, J. F. Monolithic Ni-Mo-B bifunctional electrode for large current water splitting. Adv. Funct. Mater. 2021, 32, 2107308.
Wu, Z. X.; Nie, D. Z.; Song, M.; Jiao, T. T.; Fu, G. T.; Liu, X. E. Facile synthesis of Co-Fe-B-P nanochains as an efficient bifunctional electrocatalyst for overall water-splitting. Nanoscale 2019, 11, 7506-7512.
doi: 10.1039/C9NR01794A
Qiang, C. C.; Zhang, L.; He, H. L.; Liu, Y. Y.; Zhao, Y. Y.; Sheng, T.; Liu, S. J.; Wu, X. L.; Fang, Z. Efficient electrocatalytic water splitting by bimetallic cobalt iron boride nanoparticles with controlled electronic structure. J. Colloid Interface Sci. 2021, 604, 650-659.
doi: 10.1016/j.jcis.2021.07.024
Li, Y. J.; Huang, B. L.; Sun, Y. J.; Luo, M. C.; Yang, Y.; Qin, Y. N.; Wang, L.; Li, C. J.; Lv, F.; Zhang, W. Y.; Guo, S. J. Multimetal borides nanochains as efficient electrocatalysts for overall water splitting. Small 2019, 15, 1804212.
doi: 10.1002/smll.201804212
Hu, Q.; Li, G. M.; Han, Z.; Wang, Z. Y.; Huang, X. W.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X. General synthesis of ultrathin metal borate nanomeshes enabled by 3D bark-like N-doped carbon for electrocatalysis. Adv. Energy Mater. 2019, 9, 1901130.
doi: 10.1002/aenm.201901130
Cheng, Y.; Pang, K. L.; Xu, X. H.; Yuan, P. F.; Zhang, Z. G.; Wu, X.; Zheng, L. R.; Zhang, J. N.; Song, R. Borate crosslinking synthesis of structure tailored carbon-based bifunctional electrocatalysts directly from guar gum hydrogels for efficient overall water splitting. Carbon 2020, 157, 153-163.
doi: 10.1016/j.carbon.2019.10.024
Anjum, M. A. R.; Lee, M. H.; Lee, J. S. Boron- and nitrogen-codoped molybdenum carbide nanoparticles imbedded in a BCN network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. ACS Catal. 2018, 8, 8296-8305.
doi: 10.1021/acscatal.8b01794
Xu, H. B.; Fei, B.; Cai, G. H.; Ha, Y.; Liu, J.; Jia, H. X.; Zhang, J. C.; Liu, M.; Wu, R. B. Boronization‐induced ultrathin 2D nanosheets with abundant crystalline-amorphous phase boundary supported on nickel foam toward efficient water splitting. Adv. Energy Mater. 2019, 10, 1902714.
Yuan, H. F.; Wang, S. M.; Ma, Z. Z.; Kundu, M.; Tang, B.; Li, J. P.; Wang, X. G. Oxygen vacancies engineered self-supported B doped Co3O4 nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride. Chem. Eng J. 2021, 404, 126474.
doi: 10.1016/j.cej.2020.126474
Shi, D.; Chang, B.; Ai, Z. Z.; Jiang, H. H.; Chen, F. Z.; Shao, Y. G.; Shen, J. X.; Wu, Y. Z.; Hao, X. P. Boron carbonitride with tunable B/N Lewis acid/base sites for enhanced electrocatalytic overall water splitting. Nanoscale 2021, 13, 2849-2854.
doi: 10.1039/D0NR06857H
Chodvadiya, D.; Som, N. N.; Jha, P. K.; Chakraborty, B. Enhancement in the catalytic activity of two-dimensional α-CN by B, Si and P doping for hydrogen evolution and oxygen evolution reactions. Int. J. Hydrogen Energy 2021, 46, 22478-22498.
doi: 10.1016/j.ijhydene.2021.04.080
Zhang, H. X.; Liu, M.; Bu, X. H.; Zhang, J. Zeolitic BIF crystal directly producing noble-metal nanoparticles in its pores for catalysis. Sci. Rep. 2014, 4, 3923.
Liu, M. R.; Hong, Q. L.; Li, Q. H.; Du, Y. H.; Zhang, H. X.; Chen, S. M.; Zhou, T. H.; Zhang, J. Cobalt boron imidazolate framework derived cobalt nanoparticles encapsulated in B/N codoped nanocarbon as efficient bifunctional electrocatalysts for overall water splitting. Adv. Funct. Mater. 2018, 28, 1801136.
doi: 10.1002/adfm.201801136
Zheng, Y.; Jiao Y.; Zhu, Y. H.; Cai, Q. R.; Vasileff, A.; Li, L. H.; Han, Y.; Chen, Y.; Qiao, S. Z. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 2017, 139, 3336-3339.
doi: 10.1021/jacs.6b13100
Tang, S. B.; Zhou, X. H.; Liu, T. Y.; Zhang, S. Y.; Yang, T. T.; Luo, Y.; Sharman, E.; Jiang, J. Single nickel atom supported on hybridized graphene-boron nitride nanosheet as a highly active bi-functional electrocatalyst for hydrogen and oxygen evolution reactions. J. Mater. Chem. A 2019, 7, 26261-26265.
doi: 10.1039/C9TA10500J
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
Shuyuan Pan , Zehui Yang , Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008
Xinghui Yao , Zhouyu Wang , Da-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916
Lu Qi , Zhaoyang Chen , Xiaoyu Luan , Zhiqiang Zheng , Yurui Xue , Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628