Citation: Feng-Ge Wang, Xin Liu, Qian-Xi Lv, Bin Liu, Yong-Ming Chai, Bin Dong. Transition Metal Boride-Based Materials for Electrocatalytic Water Splitting[J]. Chinese Journal of Structural Chemistry, ;2022, 41(9): 220900. doi: 10.14102/j.cnki.0254-5861.2022-0117 shu

Transition Metal Boride-Based Materials for Electrocatalytic Water Splitting







  • Author Bio: Feng-Ge Wang received her B.Eng. degree in Chemical Engineering and Process from Weifang University in 2020. She is currently a master's student in the research group of Associate Professors Dong Bin and Liu Bin at China University of Petroleum (East China). Her research interests focus on nanostructures for electrocatalysis
    Xin Liu received her B.Eng. degree in Chemical Engineering and Technology from Qingdao University of Science and Technology in 2021. She is currently a master's student in chemical engineering at China University of Petroleum (East China). Her research interest covers electrocatalytic nanostructures
    Qian-Xi Lv received his B.S. degree in Chemistry from China University of Petroleum (East China) in 2022. He is currently a M.S. student in Prof. Bin Dong's group at China University of Petroleum (East China). His research direction is electrolytic water catalyst
    Dr. Bin Liu received his B.Eng. degree in Chemical Engineering and Process from China University of Petroleum (East China) in 2007, and Ph.D. degree in Chemical Engineering and Technology from China University of Petroleum (East China) in 2012. He is currently an associate professor at University of Petroleum (East China). His research interests include green petroleum refining process, clean oil hydrogenation catalyst and process, biomass efficient catalytic hydrogenation conversion, new energy catalytic conversion and waste green resource utilization
    Prof. Yong-Ming Chai received his Ph.D. from China University of Petroleum (East China) in 2008. Now he is a professor in State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China). He was doing research as a visiting scholar in Marquette University from 2015.03 to 2016.03. His research interests are catalyst of hydrodesulfurization process of heavy oil and transition metal-based electrocatalysts
    Dr. Bin Dong received his B.S. and Ph.D. from Lanzhou University in 2002 and 2008, respectively. He was doing research as a visiting scholar in Marquette University from 2014.03 to 2015.03. Now Dr. Dong is an Associate Professor in College of Chemistry and Chemical Engineering, China University of Petroleum (East China). His research interests mainly focus on the transition metal-based functional materials for energy conversion and storage including electrocatalysis and photoelectrocatalysis for small molecules
  • Corresponding author: Bin Liu, liubin@upc.edu.cn Bin Dong, dongbin@upc.edu.cn
  • Received Date: 10 May 2022
    Accepted Date: 19 May 2022
    Available Online: 26 May 2022

Figures(13)

  • Electrocatalytic water splitting to produce hydrogen is an eco-friendly way to achieve sustainable utilization of renewable energy.The industrial application of water electrolysis, which is severely limited by slow kinetic reactions on electrode surfaces, requires the development of highly reactive, low-cost and stable electrocatalytic materials. Transition metal borides/borates have recently emerged as promising electrocatalytic materials for catalyzing hydrogen/oxygen evolution reactions (HER/OER) in inexpensive electrolyzers. However, so far, there has been little comprehensive summary of transition metal borides/borates. Here, this review provides the latest research progress on transition metal borides/borates for electrocatalytic water splitting. The structural characteristics of transition metal borides/borates and their synthesis methods in recent years are discussed. Then, the theoretical and experimental progress of transition metal borides including single-metal borides, multi-metal borides, borate derived and other nanocomposites containing boron (boron-doped nanocomposites/substrate with boron) in electrocatalytic reaction and the role of boron in regulating electrocatalytic performance are further emphasized. Finally, the potential challenges and future prospects of transition metal borides/borates in electrocatalysis are presented.
  • 加载中
    1. [1]

      Dong, B.; Xie, J. Y.; Wang, N.; Gao, W. K.; Ma, Y.; Chen, T. S.; Yan, X. T.; Li, Q. Z.; Zhou, Y. L.; Chai, Y. M. Zinc ion induced three-dimensional Co9S8 nano-neuron network for efficient hydrogen evolution. Renew. Energ. 2020, 157, 415-423.  doi: 10.1016/j.renene.2020.05.057

    2. [2]

      Radwan, A.; Jin, H.; He, D.; Mu, S. Design engineering, synthesis protocols, and energy applications of MOF-derived electrocatalysts. Nanomicro. Lett. 2021, 13, 132.

    3. [3]

      Zhang, L. C.; Zhao, H. T.; Xu, S. R.; Liu, Q.; Li, T. S.; Luo, Y. L.; Gao, S. Y.; Shi, X. F.; Asiri, A.; Sun X. P. Recent advances in 1D electrospun nanocatalysts for electrochemical water splitting. Small Struct. 2021, 2, 2000048.  doi: 10.1002/sstr.202000048

    4. [4]

      Wang, Y.; Huang, J.; Wang, L.; She, H.; Wang, Q. Research progress of ferrite materials for photoelectrochemical water splitting. Chin. J. Struct. Chem. 2022, 41, 2201054-2201068.

    5. [5]

      Zhang, J. Y.; Wang, H.; Tian, Y.; Yan, Y.; Xue, Q.; He, T.; Liu, H.; Wang, C.; Chen, Y.; Xia, B. Y. Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode. Angew. Chem. Int. Ed. 2018, 57, 7649-7653.  doi: 10.1002/anie.201803543

    6. [6]

      Gong, L.; Yang, H.; Wang, H.; Qi, R.; Wang, J.; Chen, S.; You, B.; Dong, Z.; Liu, H.; Xia, B. Y. Corrosion formation and phase transformation of nickel-iron hydroxide nanosheets array for efficient water oxidation. Nano Res. 2021, 14, 4528-4533.  doi: 10.1007/s12274-021-3366-3

    7. [7]

      Long, X.; Meng, J.; Gu, J.; Ling, L.; Li, Q.; Liu, N.; Wang, K.; Li, Z. Interfacial engineering of NiFeP/NiFe-LDH heterojunction for efficient overall water splitting. Chin. J. Struct. Chem. 2022, 41, 2201019-2201024.

    8. [8]

      Shao, L. Y.; Sun, H. M.; Miao, L. C.; Chen, X.; Han, M.; Sun, J. C.; Liu, S.; Li, L.; Cheng, F. Y.; Chen, J. Facile preparation of NH2- functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 2494-2499.  doi: 10.1039/C7TA10884B

    9. [9]

      Yang, Y.; Yu, Y.; Li, J.; Chen, Q.; Du, Y.; Rao, P.; Li, R.; Jia, C.; Kang, Z.; Deng, P.; Shen, Y.; Tian, X. Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nanomicro. Lett. 2021, 13, 160.

    10. [10]

      Yang, S.; Qin, L.; Zhang, W.; Cao, R. The mechanism of water oxidation from mn-based heterogeneous electrocatalysts. Chin. J. Struct. Chem. 2022, 41, 2204022-2204033.

    11. [11]

      Qin, J. F.; Yang, M.; Chen, T. S.; Dong, B.; Hou, S.; Ma, X.; Zhou, Y. N.; Yang, X. L.; Nan, J.; Chai, Y. M. Ternary metal sulfides MoCoNiS derived from metal organic frameworks for efficient oxygen evolution. Int. J. Hydrogen Energy 2020, 45, 2745-2753.  doi: 10.1016/j.ijhydene.2019.11.156

    12. [12]

      Huang, C. Q.; Yu, L.; Zhang, W.; Xiao, Q.; Zhou, J. Q.; Zhang, Y. L.; An, P. F.; Zhang, J.; Yu, Y. N-doped Ni-Mo based sulfides for high-efficiency and stable hydrogen evolution reaction. Appl. Catal. B 2020, 276, 119137.  doi: 10.1016/j.apcatb.2020.119137

    13. [13]

      Yuan, J.; Cheng, X.; Wang, H.; Lei, C.; Pardiwala, S.; Yang, B.; Li, Z.; Zhang, Q.; Lei, L.; Wang, S.; Hou, Y. A superaerophobic bimetallic selenides heterostructure for efficient industrial‑level oxygen evolution at ultra‑high current densities. Nanomicro. Lett. 2020, 12, 104.

    14. [14]

      Li, M.; Feng, L. NiSe2-CoS2 with a hybrid nanorods and nanoparticles structure for efficient oxygen evolution reaction. Chin. J. Struct. Chem. 2022, 41, 2201019-2201024.

    15. [15]

      Yan, T.; Zhang, X.; Liu, H.; Jin, Z. CeO2 particles anchored to Ni2P nanoplate for efficient photocatalytic hydrogen evolution. Chin. J. Struct. Chem. 2022, 41, 2201047-2201053.

    16. [16]

      Shi, Y.; Li, M.; Yu, Y.; Zhang, B. Recent advances in nanostructured transition metal phosphides: synthesis and energy-related applications. Energy Environ. Sci. 2020, 13, 4564-4582.  doi: 10.1039/D0EE02577A

    17. [17]

      Li, P.; Hong, W.; Liu, W. Fabrication of large scale self-supported WC/Ni(OH)2 electrode for high-current-density hydrogen evolution. Chin. J. Struct. Chem. 2021, 40, 1365-1371.

    18. [18]

      Han, N.; Yang, K. R.; Lu, Z.; Li, Y.; Xu, W.; Gao, T.; Cai, Z.; Zhang, Y.; Batista, V. S.; Liu, W.; Sun, X. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 2018, 9, 924.  doi: 10.1038/s41467-018-03429-z

    19. [19]

      Shu, X.; Chen, S.; Pan, W.; Zhang, J. Cobalt nitride embedded holey N-doped graphene as advanced bifunctional electrocatalysts for Zn-air batteries and overall water splitting. Carbon 2020, 157, 234-243.  doi: 10.1016/j.carbon.2019.10.023

    20. [20]

      Saad, A.; Shen, H.; Cheng, Z.; Arbi, R.; Guo, B.; Hui, L. S.; Liang, K.; Liu, S.; Attfield, J. P.; Turak, A.; Wang, J.; Yang, M. Mesoporous ternary nitrides of earth-abundant metals as oxygen evolution electrocatalyst. Nanomicro. Lett. 2020, 12, 79.

    21. [21]

      Guo, B. Y.; Zhang, X. Y.; Ma, X.; Chen, T. S.; Chen, Y.; Wen, M. L.; Qin, J. F.; Nan, J.; Chai, Y. M.; Dong, B. RuO2/Co3O4 nanocubes based on Ru ions impregnation into Prussian blue precursor for oxygen evolution. Inter. J. Hydrogen Energy 2020, 45, 9575-9582.  doi: 10.1016/j.ijhydene.2020.01.182

    22. [22]

      Xie, J. Y.; Fan, R. Y.; Fu, J. Y.; Zhen, Y. N.; Li, M. X.; Liu, H. J.; Ma, Y.; Wang, F. L.; Chai, Y. M.; Dong, B. Double doping of V and F on Co3O4 nanoneedles as efficient electrocatalyst for oxygen evolution. Int. J. Hydrogen Energy 2021, 46, 19962-19970.  doi: 10.1016/j.ijhydene.2021.03.141

    23. [23]

      Fu, C.; Wang, Y.; Huang, J. Hybrid of quaternary layered double hydroxides and carbon nanotubes for oxygen evolution reaction. Chin. J. Struct. Chem. 2020, 39, 1807-1816.

    24. [24]

      Li, R.; Xu, H.; Yang, P.; Wang, D.; Li, Y.; Xiao, L.; Lu, X.; Wang, B.; Zhang, J.; An, M. Synergistic interfacial and doping engineering of hetero-structured NiCo(OH)x-CoyW as an efficient alkaline hydrogen evolution electrocatalyst. Nanomicro. Lett. 2021, 13, 120.

    25. [25]

      Shi, L.; Chen, H.; Liang, X.; Liu, Y.; Zou, X. Theoretical insights into nonprecious oxygen-evolution active sites in Ti-Ir-based perovskite solid solution electrocatalysts. J. Mater. Chem. A 2020, 8, 218-223.  doi: 10.1039/C9TA10059H

    26. [26]

      Chen, D.; Qiao, M.; Liu, Y. R.; Hao, L.; Liu, D.; Dong, C. L.; Li, Y.; Wang, S. Preferential cation vacancies in perovskite hydroxide for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2018, 57, 8691-8696.  doi: 10.1002/anie.201805520

    27. [27]

      Chen, Y.; Li, H.; Wang, J.; Du, Y.; Xi, S.; Sun, Y.; Sherburne, M.; Ager, J. W.; Fisher, A. C.; Xu, Z. J. Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nat. Commun. 2019, 10, 572.  doi: 10.1038/s41467-019-08532-3

    28. [28]

      Guo, H. P.; Ruan, B. Y.; Luo, W. B.; Deng, J. Q.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Ultrathin and edge-enriched holey nitride nanosheets as bifunctional electrocatalysts for the oxygen and hydrogen evolution reactions. ACS Catal. 2018, 8, 9686-9696.  doi: 10.1021/acscatal.8b01821

    29. [29]

      Li, R. C.; Zhou, D.; Luo, J. X.; Xu, W. M.; Li, J. W.; Li, S. S.; Cheng, P. P.; Yuan, D. S. The urchin-like sphere arrays Co3O4 as a bifunctional catalyst for hydrogen evolution reaction and oxygen evolution reaction. J. Power Sources 2017, 341, 250-256.  doi: 10.1016/j.jpowsour.2016.10.096

    30. [30]

      Chen, H.; Zou, X. X. Intermetallic borides: structures, synthesis and applications in electrocatalysis. Inorg. Chem. Front. 2020, 7, 2248-2264.  doi: 10.1039/D0QI00146E

    31. [31]

      Gupta, S.; Patel, N.; Fernandes, R.; Kadrekar, R.; Dashora, A.; Yadav, A. K.; Bhattacharyya, D.; Jha, S. N.; Miotello, A.; Kothari, D. C. Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range. Appl. Catal. B 2016, 192, 126-133.  doi: 10.1016/j.apcatb.2016.03.032

    32. [32]

      Gupta, S.; Patel, N.; Miotello, A.; Kothari, D. C. Cobalt-boride: an efficient and robust electrocatalyst for hydrogen evolution reaction. J. Power Sources 2015, 279, 620-625.  doi: 10.1016/j.jpowsour.2015.01.009

    33. [33]

      Masa, J.; Andronescu, C.; Antoni, H.; Sinev, I.; Seisel, S.; Elumeeva, K.; Barwe, S.; Marti-Sanchez, S.; Arbiol, R. C.; Muhler, S. W. Role of boron and phosphorus in enhanced electrocatalytic oxygen evolution by nickel borides and nickel phosphides. ChemElectroChem 2019, 6, 235-240.  doi: 10.1002/celc.201800669

    34. [34]

      Hulm, J. K.; Matthias, B. T. New superconducting borides and nitrides. Phys. Rev. 1951, 82, 273-274.  doi: 10.1103/PhysRev.82.273

    35. [35]

      Hardy, G. F.; Hulm, J. K. The superconductivity of some transition metal compounds. Phys. Rev. 1954, 93, 1004-1016.  doi: 10.1103/PhysRev.93.1004

    36. [36]

      Chung, H. Y.; Weinberger, M. B.; Levine, J. B.; Kavner, A.; Yang, J. M.; Tolbert, S. H.; Kaner, R. B. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science 2007, 316, 436-438.  doi: 10.1126/science.1139322

    37. [37]

      Gabani, S.; Flachbart, K.; Siemensmeyer, K.; Mori, T. Magnetism and superconductivity of rare earth borides. J. Alloy. Compd. 2020, 821, 153201.  doi: 10.1016/j.jallcom.2019.153201

    38. [38]

      Sussardi, A.; Tanaka, T.; Khan, A. U.; Schlapbach, L.; Mori, T. Enhanced thermoelectric properties of samarium boride. J. Materiomics 2015, 1, 196-204.  doi: 10.1016/j.jmat.2015.07.007

    39. [39]

      Chen, Z. J.; Duan, X. G.; Wei, W.; Wang, S. B.; Zhang, Z. J.; Ni, B. J. Boride-based electrocatalysts: emerging candidates for water splitting. Nano Res. 2020, 13, 293-314.  doi: 10.1007/s12274-020-2618-y

    40. [40]

      Gupta, S.; Patel, M. K.; Miotello, A.; Patel, N. Metal boride-based catalysts for electrochemical water-splitting: a review. Adv. Funct. Mater. 2019, 30, 1906481.

    41. [41]

      Jiang, Y. Y.; Lu, Y. Z. Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting. Nanoscale 2020, 12, 9327-9351.  doi: 10.1039/D0NR01279C

    42. [42]

      Guo, F. F.; Wu, Y. Y.; Ai, X.; Chen, H.; Li, G. D.; Chen, W.; Zou, X. X. A class of metal diboride electrocatalysts synthesized by a molten salt-assisted reaction for the hydrogen evolution reaction. Chem. Commun. 2019, 55, 8627-8630.  doi: 10.1039/C9CC03638E

    43. [43]

      Chen, Y. L.; Yu, G. T.; Chen, W.; Liu, Y. P.; Li, G. D.; Zhu, P. W.; Tao, Q.; Li, Q. J.; Liu, J. W.; Shen, X. P.; Li, H.; Huang, X. R.; Wang, D. J.; Asefa, T.; Zou, X. X. Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 12370-12373.  doi: 10.1021/jacs.7b06337

    44. [44]

      Jothi, P. R.; Zhang, Y.; Yubuta, K.; Culver, D. B.; Conley, M.; Fokwa, B. P. T. Abundant vanadium diboride with graphene-like boron layers for hydrogen evolution. ACS Appl. Energy Mater. 2019, 2, 176-181.  doi: 10.1021/acsaem.8b01615

    45. [45]

      Park, C. H.; Zhang, Y.; Scheifers, J. P.; Jothi, P. R.; Encinas, A.; Fokwa, B. P. T. Graphene- and phosphorene-like boron layers with contrasting activities in highly active Mo2B4 for hydrogen evolution. J. Am. Chem. Soc. 2017, 139, 12915-12918.  doi: 10.1021/jacs.7b07247

    46. [46]

      Park, H.; Zhang, Y. M.; Lee, E.; Shankhari, P.; Fokwa, B. P. T. High-current-density HER electrocatalysts: graphene-like boron layer and tungsten as key ingredients in metal diborides. ChemSusChem 2019, 12, 3726-3731.  doi: 10.1002/cssc.201901301

    47. [47]

      Yuan, W. Y.; Zhao, X. S.; Hao, W. J.; Li, J. X.; Wang, L. C.; Ma, X. H.; Guo, Y. H. Performance of surface-oxidized Ni3B, Ni2B, and NiB2 electrocatalysts for overall water splitting. ChemElectroChem 2019, 6, 764-770.  doi: 10.1002/celc.201801354

    48. [48]

      Sun, J. K.; Zhang, W.; Wang, S. Y.; Ren, Y. B.; Liu, Q. Y.; Sun, Y. F.; Tang, L.; Guo, J. X.; Zhang, X. Ni-Co-B nanosheets coupled with reduced graphene oxide towards enhanced electrochemical oxygen evolution. J. Alloy. Compd. 2019, 776, 511-518.  doi: 10.1016/j.jallcom.2018.10.296

    49. [49]

      Chen, H. Y.; Ouyang, S.; Zhao, M.; Li, Y. X.; Ye, J. H. Synergistic activity of Co and Fe in amorphous Cox-Fe-B catalyst for efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 40333-40343.  doi: 10.1021/acsami.7b13939

    50. [50]

      Masa, J.; Piontek, S.; Wilde, P.; Antoni, H.; Eckhard, T.; Chen, Y. T.; Muhler, M.; Apfel, U. P.; Schuhmann, W. Ni-metalloid (B, Si, P, As, and Te) alloys as water oxidation electrocatalysts. Adv. Energy Mater. 2019, 9, 1900796.

    51. [51]

      Jiang, W. J.; Niu, S.; Tang, T.; Zhang, Q. H.; Liu, X. Z.; Zhang, Y.; Chen, Y. Y.; Li, J. H.; Gu, L.; Wan, L. J.; Hu, J. S. Crystallinity-modulated electrocatalytic activity of a nickel(II) borate thin layer on Ni3B for efficient water oxidation. Angew. Chem. Int. Ed. 2017, 56, 6572-6577.  doi: 10.1002/anie.201703183

    52. [52]

      Wang, N.; Xu, A.; Ou, P. F.; Hung, S. F.; Ozden, A.; Lu, Y. R.; Abed, J.; Wang, Z. Y.; Yan, Y.; Sun, M. J.; Xia, Y. J.; Han, M.; Han, J. R.; Yao, K. L.; Wu, F. Y.; Chen, P. H.; Vomiero, A.; Seifitokaldani, A.; Sun, X. H.; Sinton, D.; Liu, Y. C.; Sargent, E. H.; Liang, H. Y. Boride-derived oxygen-evolution catalysts. Nat. Commun. 2021, 12, 6089.  doi: 10.1038/s41467-021-26307-7

    53. [53]

      Li, J. H.; Chen, H.; Liu, Y. P.; Gao, R. Q.; Zou, X. X. In situ structural evolution of a nickel boride catalyst: synergistic geometric and electronic optimization for the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 5288-5294.  doi: 10.1039/C9TA00489K

    54. [54]

      Guo, F. F.; Wu, Y. Y.; Chen, H.; Liu, Y. P.; Yang, L.; Ai, X.; Zou, X. X. High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces. Energy Environ. Sci. 2019, 12, 684-692.  doi: 10.1039/C8EE03405B

    55. [55]

      Li, J.; Liu, Y.; Chen, H.; Zhang, Z.; Zou, X. Design of a multilayered oxygen-evolution electrode with high catalytic activity and corrosion resistance for saline water splitting. Adv. Funct. Mater. 2021, 31, 2101820.  doi: 10.1002/adfm.202101820

    56. [56]

      Wang, L. C.; Li, J. X.; Zhao, X. S.; Hao, W. J.; Ma, X. H.; Li, S. J.; Guo, Y. H. Surface-activated amorphous iron borides (FexB) as efficient electrocatalysts for oxygen evolution reaction. Adv. Mater. Interfaces 2019, 6, 1801690.  doi: 10.1002/admi.201801690

    57. [57]

      Gong, Z. C.; Liu, R.; Gong, H. S.; Ye, G. L.; Liu, J. J.; Dong, J. C.; Liao, J. W.; Yan, M. M.; Liu, J. B.; Huang, K.; Xing, L. L.; Liang, J. F.; He, Y. M.; Fei, H. L. Constructing a graphene-encapsulated amorphous/crystalline heterophase NiFe alloy by microwave thermal shock for boosting the oxygen evolution reaction. ACS. Catal. 2021, 11, 12284-12292.  doi: 10.1021/acscatal.1c03333

    58. [58]

      Sun, H. M.; Xu, X. B.; Yan, Z. H.; Chen, X.; Jiao, L. F.; Cheng, F. Y.; Chen, J. Superhydrophilic amorphous Co-B-P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 22062-22069.  doi: 10.1039/C8TA02999G

    59. [59]

      He, T.; Nsanzimana, J. M. V.; Qi, R. J.; Zhang, J. Y.; Miao, M.; Yan, Y.; Qi, K.; Liu, H. F.; Xia, B. Y. Synthesis of amorphous boride nanosheets by the chemical reduction of prussian blue analogs for efficient water electrolysis. J. Mater. Chem. A 2018, 6, 23289-23294.  doi: 10.1039/C8TA09609K

    60. [60]

      Masa, J.; Weide, P.; Peeters, D.; Sinev, I.; Xia, W.; Sun, Z. Y.; Somsen, C.; Muhler, M.; Schuhmann, W. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution. Adv. Energy Mater. 2016, 6, 1502313.  doi: 10.1002/aenm.201502313

    61. [61]

      Xu, N.; Cao, G. X.; Chen, Z. J.; Kang, Q.; Dai, H. B.; Wang, P. Cobalt nickel boride as an active electrocatalyst for water splitting. J. Mater. Chem. A 2017, 5, 12379-12384.  doi: 10.1039/C7TA02644G

    62. [62]

      Cao, G. X.; Xu, N.; Chen, Z. J.; Kang, Q.; Dai, H. B.; Wang, P. Cobalt-tungsten-boron as an active electrocatalyst for water electrolysis. ChemistrySelect. 2017, 2, 6187-6193.  doi: 10.1002/slct.201701459

    63. [63]

      Jiang, J.; Wang, M.; Yan, W. S.; Liu, X. F.; Liu, J. X.; Yang, J. L.; Sun, L. C. Highly active and durable electrocatalytic water oxidation by a NiB0.45/NiOx core-shell heterostructured nanoparticulate film. Nano Energy 2017, 38, 175-184.  doi: 10.1016/j.nanoen.2017.05.045

    64. [64]

      Masa, J.; Sinev, I.; Mistry, H.; Ventosa, E.; Mata, M.; Arbiol, J.; Muhler, M.; Roldan, C. B.; Schuhmann, W. Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution. Adv. Energy Mater. 2017, 7, 1700381.  doi: 10.1002/aenm.201700381

    65. [65]

      Park, H.; Encinas, A.; Scheifers, J. P.; Zhang, Y. M.; Fokwa, B. P. T. Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 2017, 56, 5575-5578.  doi: 10.1002/anie.201611756

    66. [66]

      Li, H.; Wen, P.; Li, Q.; Dun, C.; Xing, J.; Lu, C.; Adhikari, S.; Jiang, L.; Carroll, D. L.; Geyer, S. M. Earth-abundant iron diboride (FeB2) nanoparticles as highly active bifunctional electrocatalysts for overall water splitting. Adv. Energy Mater. 2017, 7, 1700513.  doi: 10.1002/aenm.201700513

    67. [67]

      Zhang, R. Q.; Liu, H. X.; Wang, C. F.; Wang, L. C.; Yang, Y. J.; Guo, Y. H. Electroless plating of transition metal boride with high boron content as superior HER electrocatalyst. ChemCatChem 2020, 12, 3068-3075.  doi: 10.1002/cctc.202000315

    68. [68]

      Ma, X. Z.; Wen, J.; Zhang, S.; Yuan, H. R.; Li, K. Y.; Yan, F.; Zhang, X. T.; Chen, Y. J. Crystal CoxB (x = 1-3) synthesized by a ball-milling method as high-performance electrocatalysts for the oxygen evolution reaction. ACS Sustain. Chem. Eng. 2017, 5, 10266-10274.  doi: 10.1021/acssuschemeng.7b02281

    69. [69]

      Ai, X.; Zou, X.; Chen, H.; Su, Y. T.; Feng, X. L.; Li, Q. J.; Liu, Y. P.; Zhang, Y.; Zou, X. X. Transition-metal-boron intermetallics with strong interatomic d-sp orbital hybridization for high-performance electrocatalysis. Angew. Chem. Int. Ed. 2020, 59, 3961-3965.  doi: 10.1002/anie.201915663

    70. [70]

      Zou, X.; Wang, L.; Ai, X.; Chen, H.; Zou, X. X. Crystal phase-dependent electrocatalytic hydrogen evolution performance of ruthenium-boron intermetallics. Chem. Commun. 2020, 56, 3061-3064.  doi: 10.1039/D0CC00070A

    71. [71]

      Xu, Q. C.; Liu, Y.; Jiang, H.; Hu, Y. J.; Liu, H. L.; Li, C. Z. Unsatu-rated sulfur edge engineering of strongly coupled MoS2 nanosheet-carbon macroporous hybrid catalyst for enhanced hydrogen generation. Adv. Energy Mater. 2019, 9, 1802553.  doi: 10.1002/aenm.201802553

    72. [72]

      Dinca, M.; Surendranath, Y.; Nocera, D. G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. PNAS 2010, 107, 10337-10341.  doi: 10.1073/pnas.1001859107

    73. [73]

      Surendranath, Y.; Dinca, M.; Nocera, D. G. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J. Am. Chem. Soc. 2009, 131, 2615-2620.  doi: 10.1021/ja807769r

    74. [74]

      Nsanzimana, J. M. V.; Peng, Y. C.; Xu, Y. Y.; Thia, L.; Wang, C.; Xia, B. Y.; Wang, X. An efficient and earth-abundant oxygen-evolving electrocatalyst based on amorphous metal borides. Adv. Energy Mater. 2018, 8, 1701475.  doi: 10.1002/aenm.201701475

    75. [75]

      Zhang, J.; Li, X. X.; Liu, Y. T.; Zeng, Z. W.; Cheng, X.; Wang, Y. D.; Tu, W. M.; Pan, M. Bi-metallic boride electrocatalysts with enhanced activity for the oxygen evolution reaction. Nanoscale 2018, 10, 11997-12002.  doi: 10.1039/C8NR02198H

    76. [76]

      Gupta, S.; Patel, N.; Fernandes, R.; Hanchate, S.; Miotello, A.; Kothari, D. C. Co-Mo-B nanoparticles as a non-precious and efficient bifunctional electrocatalyst for hydrogen and oxygen evolution. Electrochim. Acta 2017, 232, 64-71.  doi: 10.1016/j.electacta.2017.02.100

    77. [77]

      Schuch, J.; Klemenz, S.; Schuldt, P.; Zieschang, A. M.; Dolique, S.; Connor, P.; Kaiser, B.; Kramm, U. I.; Albert, B.; Jaegermann, W. Efficient oxygen evolution electrocatalyst by incorporation of nickel into nanoscale dicobalt boride. ChemCatChem 2021, 13, 1772-1780.  doi: 10.1002/cctc.202002030

    78. [78]

      Yang, Y. S.; Zhuang, L. Z.; Rufford, T. E.; Wang, S. B.; Zhu, Z. H. Efficient water oxidation with amorphous transition metal boride catalysts synthesized by chemical reduction of metal nitrate salts at room temperature. RSC Adv. 2017, 7, 32923-32930.  doi: 10.1039/C7RA02558K

    79. [79]

      Guo, Y. H.; Zhang, R. Q.; Hao, W. J.; Zhang, J. K.; Yang, Y. J. Multifunctional Co-B-O@CoxB catalysts for efficient hydrogen generation. Int. J. Hydrogen Energy 2020, 45, 380-390.  doi: 10.1016/j.ijhydene.2019.09.008

    80. [80]

      Zeng, M.; Wang, H.; Zhao, C.; Wei, J. K.; Qi, K.; Wang, W. L.; Bai, X. D. Nanostructured amorphous nickel boride for high-efficiency electrocatalytic hydrogen evolution over a broad pH range. ChemCatChem 2016, 8, 708-712.  doi: 10.1002/cctc.201501221

    81. [81]

      Wang, C.; Zhai, P. L.; Xia, M. Y.; Wu, Y. Z.; Zhang, B.; Li, Z. W.; Ran, L.; Gao, J. F.; Zhang, X. M.; Fan, Z. Z.; Sun, L. C.; Hou, J. G. Engineering lattice oxygen activation of iridium clusters stabilized on amorphous bimetal borides array for oxygen evolution reaction. Angew. Chem. Int. Ed. 2021, 60, 27126-27134.  doi: 10.1002/anie.202112870

    82. [82]

      Li, Y.; Jiang, X. L.; Tang, M. Y.; Zheng, Q. J.; Huo, Y.; Xie, F. Y.; Lin, D. M. A high-performance oxygen evolution electrocatalyst based on partially amorphous bimetallic cobalt iron boride nanosheet. Int. J. Hydrogen Energy 2020, 45, 28586-28597.  doi: 10.1016/j.ijhydene.2020.07.140

    83. [83]

      Hao, W. J.; Wu, R. B.; Zhang, R. Q.; Ha, Y.; Chen, Z. L.; Wang, L. C.; Yang, Y. J.; Ma, X. H.; Sun, D. L.; Fang, F.; Guo, Y. H. Electroless plating of highly efficient bifunctional boride-based electrodes toward practical overall water splitting. Adv. Energy Mater. 2018, 8, 1801372.  doi: 10.1002/aenm.201801372

    84. [84]

      Chen, Z. J.; Kang, Q.; Cao, G. X.; Xu, N.; Dai, H. B.; Wang, P. Study of cobalt boride-derived electrocatalysts for overall water splitting. Int. J. Hydrogen Energy 2018, 43, 6076-6087.  doi: 10.1016/j.ijhydene.2018.01.161

    85. [85]

      Zhang, P. L.; Wang, M.; Yang, Y.; Yao, T. Y.; Han, H. X.; Sun, L. C. Electroless plated Ni-B films as highly active electrocatalysts for hydrogen production from water over a wide pH range. Nano Energy 2016, 19, 98-107.  doi: 10.1016/j.nanoen.2015.11.020

    86. [86]

      Yang, Y.; Wang, M.; Zhang, P. L.; Wang, W. H.; Han, H. X.; Sun, L. C. Evident enhancement of photoelectrochemical hydrogen production by electroless deposition of M-B (M = Ni, Co) catalysts on silicon nanowire arrays. ACS Appl. Mater. Interfaces 2016, 8, 30143-30151.  doi: 10.1021/acsami.6b09600

    87. [87]

      Kim, J.; Kim, H.; Kim, S. K.; Ahn, S. H. Electrodeposited amorphous Co-P-B ternary catalyst for hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 6282-6288.  doi: 10.1039/C7TA11033B

    88. [88]

      Wu, Y. H.; Gao, Y.; He, H. W.; Zhang, P. Novel electrocatalyst of nickel sulfide boron coating for hydrogen evolution reaction in alkaline solution. Appl. Surf. Sci. 2019, 480, 689-696.  doi: 10.1016/j.apsusc.2019.03.025

    89. [89]

      Mann, D. K.; Xu, J.; Mordvinova, N. E.; Yannello, V.; Ziouani, Y.; Gonzalez-Ballesteros, N.; Sousa, J. P. S.; Lebedev, O. I.; Kolen'ko, Y. V.; Shatruk, M. Electrocatalytic water oxidation over AlFe2B2. Chem. Sci. 2019, 10, 2796-2804.  doi: 10.1039/C8SC04106G

    90. [90]

      Lee, E.; Park, H.; Joo, H.; Fokwa, B. P. T. Unexpected correlation between boron chain condensation and hydrogen evolution reaction (HER) activity in highly active vanadium borides: enabling predictions. Angew. Chem. Int. Ed. 2020, 59, 11774-11778.  doi: 10.1002/anie.202000154

    91. [91]

      Carenco, S.; Portehault, D.; Boissiere, C.; Mezailles, N.; Sanchez, C. Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem. Rev. 2013, 113, 7981-8065.  doi: 10.1021/cr400020d

    92. [92]

      Li, Q. J.; Zou, X.; Ai, X.; Chen, H.; Sun, L.; Zou, X. X. Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity. Adv. Energy Mater. 2019, 9, 1803369.

    93. [93]

      Jothi, P. R.; Zhang, Y. M.; Scheifers, J. P.; Park, H.; Fokwa, B. P. T. Molybdenum diboride nanoparticles as a highly efficient electrocatalyst for the hydrogen evolution reaction. Sustain. Energy Fuels 2017, 1, 1928-1934.  doi: 10.1039/C7SE00397H

    94. [94]

      Jothi, P. R.; Yubuta, K.; Fokwa, B. P. T. A simple, general synthetic route toward nanoscale transition metal borides. Adv. Mater. 2018, 30, 1704181.  doi: 10.1002/adma.201704181

    95. [95]

      Xiao, M.; Zhang, L.; Luo, B.; Lyu, M.; Wang, Z. L.; Huang, H. M.; Wang, S. C.; Du, A. J.; Wang, L. Z. Molten-salt-mediated synthesis of an atomic nickel Co-catalyst on TiO2 for improved photocatalytic H2 evolution. Angew. Chem. Int. Ed. 2020, 59, 7230-7234.  doi: 10.1002/anie.202001148

    96. [96]

      Wang, F. G.; Liu, B.; Wang, H. Y.; Lin, Z. Y.; Dong, Y. W.; Yu, N.; Luan, R. N.; Chai, Y. M.; Dong, B. Motivating borate doped FeNi layered double hydroxides by molten salt method toward efficient oxygen evolution. J. Colloid Interface Sci. 2022, 610, 173-181.  doi: 10.1016/j.jcis.2021.12.031

    97. [97]

      Zhou, Y. N.; Wang, F. L.; Dou, S. Y.; Shi, Z. N.; Dong, B.; Yu, W. L.; Zhao, H. Y.; Wang, F. G.; Yu, J. F.; Chai, Y. M. Motivating high-valence Nb doping by fast molten salt method for NiFe hydroxides toward efficient oxygen evolution reaction. Chem. Eng. J. 2022, 427, 131643.  doi: 10.1016/j.cej.2021.131643

    98. [98]

      Wang, X. F.; Tai, G. A.; Wu, Z. H.; Hu, T. S.; Wang, R. Ultrathin molybdenum boride films for highly efficient catalysis of the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 23471-23475.  doi: 10.1039/C7TA08597D

    99. [99]

      Chen, X. C.; Yu, Z. X.; Wei, L.; Zhou, Z.; Zhai, S. L.; Chen, J. S.; Wang, Y. Q.; Huang, Q. W.; Karahan, H. E.; Liao, X. Z.; Chen, Y. Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2019, 7, 764-774.  doi: 10.1039/C8TA09130G

    100. [100]

      Cao, X. Y.; Cui, L.; Wang, X. X.; Yang, W. R.; Liu, J. Q. Nickel-borate/reduced graphene oxide nanohybrid: a robust and efficient electrocatalyst for oxygen evolution reaction in alkaline and near neutral media. ChemCatChem 2018, 10, 2826-2832.  doi: 10.1002/cctc.201800312

    101. [101]

      Chen, P. Z.; Xu, K.; Zhou, T. P.; Tong, Y.; Wu, J. C.; Cheng, H.; Lu, X. L.; Ding, H.; Wu, C. Z.; Xie, Y. Strong-coupled cobalt borate nanosheets/graphene hybrid as electrocatalyst for water oxidation under both alkaline and neutral conditions. Angew. Chem. 2016, 128, 2534-2538.  doi: 10.1002/ange.201511032

    102. [102]

      Wang, F. G.; Liu, B.; Lin, Z. Y.; Liu, X.; Ma, Y.; Zhou, Y. L.; Yu, J. F.; Chai, Y. M.; Dong, B. Constructing partially amorphous borate doped iron-nickel nitrate hydroxide nanoarrays by rapid microwave activation for oxygen evolution. Appl. Surf. Sci. 2022, 592, 153245.  doi: 10.1016/j.apsusc.2022.153245

    103. [103]

      Sun, J. Q.; Yang, D. J.; Lowe, S.; Zhang, L. J.; Wang, Y. Z.; Zhao, S. L.; Liu, P. R.; Wang, Y.; Tang, Z. Y.; Zhao, H. J.; Yao, X. D. Sandwich‐like reduced graphene oxide/carbon black/amorphous cobalt borate nanocomposites as bifunctional cathode electrocatalyst in rechargeable zinc‐air batteries. Adv. Energy Mater. 2018, 8, 1801495.  doi: 10.1002/aenm.201801495

    104. [104]

      Yang, L. B.; Liu, D. N.; Hao, S.; Kong, R. M.; Asiri, A. M.; Zhang, C. X.; Sun, X. P. A cobalt-borate nanosheet array: an efficient and durable non-noble-metal electrocatalyst for water oxidation at near neutral pH. J. Mater. Chem. A 2017, 5, 7305-7308.  doi: 10.1039/C7TA00982H

    105. [105]

      Ji, X. Q.; Cui, L.; Liu, D. N.; Hao, S.; Liu, J. Q.; Qu, F. L.; Ma, Y. J.; Du, G.; Asiri, A. M.; Sun, X. P. A nickel-borate nanoarray: a highly active 3D oxygen-evolving catalyst electrode operating in near-neutral water. Chem. Commun. 2017, 53, 3070-3073.  doi: 10.1039/C6CC09893B

    106. [106]

      Ma, M.; Qu, F. L.; Ji, X. Q.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Yao, Y. D.; Chen, L.; Sun, X. P. Bimetallic nickel-substituted cobalt-borate nanowire array: an earth-abundant water oxidation electrocatalyst with superior activity and durability at near neutral pH. Small 2017, 13, 1700394.  doi: 10.1002/smll.201700394

    107. [107]

      Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.  doi: 10.1002/adma.201806326

    108. [108]

      She, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: insights into materials design. Science 2017, 355, 146.

    109. [109]

      Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practicalelectrocatalysts. Angew. Chem. Int. Ed. 2018, 57, 7568-7579.  doi: 10.1002/anie.201710556

    110. [110]

      Peng, L. S.; Zheng, X. Q.; Li, L.; Zhang, L.; Yang, N.; Xiong, K.; Chen, H. M.; Li, J.; Wei, Z. D. Chimney effect of the interface in metal oxide/metal composite catalysts on the hydrogen evolution reaction. Appl. Catal. B 2019, 245, 122-129.  doi: 10.1016/j.apcatb.2018.12.035

    111. [111]

      Zhao, Z. P.; Liu, H. T.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9046-9050.  doi: 10.1021/jacs.8b04770

    112. [112]

      Li, Y. X.; Zhang, W. Z.; Li, H.; Yang, T. Y.; Peng, S. Q.; Kao, C.; Zhang, W. Y. Ni-B coupled with borate-intercalated Ni(OH)2 for efficient and stable electrocatalytic and photocatalytic hydrogen evolution under low alkalinity. Chem. Eng. J. 2020, 394, 124928.  doi: 10.1016/j.cej.2020.124928

    113. [113]

      Bao, X. H.; Li, Y. T.; Wang, J.; Zhong, Q. Amorphous‐crystalline Co-B-P catalyst for synergistically enhanced hydrogen evolution reaction. ChemCatChem 2020, 12, 6259-6264.  doi: 10.1002/cctc.202001343

    114. [114]

      Han, H.; Choi, H.; Mhin, S.; Hong, Y. R.; Kim, K. M.; Kwon, J.; Ali, G.; Chung, K. Y.; Je, M.; Umh, H. N.; Lim, D. H.; Davey, K.; Qiao, S. Z.; Paik, U.; Song, T. Advantageous crystalline-amorphous phase boundary for enhanced electrochemical water oxidation. Energy Environ. Sci. 2019, 12, 2443-2454.  doi: 10.1039/C9EE00950G

    115. [115]

      Vrubel, H.; Hu, X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem. Int. Ed. 2012, 51, 12703-12706.  doi: 10.1002/anie.201207111

    116. [116]

      Zhuang, Z. C.; Li, Y.; Li, Z. L.; Lv, F.; Lang, Z. Q.; Zhao, K. N.; Zhou, L.; Moskaleva, L.; Guo, S. J.; Mai, L. Q. MoB/g-C3N4 interface materials as a schottky catalyst to boost hydrogen evolution. Angew. Chem. Int. Ed. 2018, 57, 496-500.  doi: 10.1002/anie.201708748

    117. [117]

      Li, Q.; Wang, L. N.; Ai, X.; Chen, H.; Zou, J. Y.; Li, G. D.; Zou, X. X. Multiple crystal phases of intermetallic tungsten borides and phase-dependent electrocatalytic property for hydrogen evolution. Chem. Commun. 2020, 56, 13983-13986.  doi: 10.1039/D0CC06072K

    118. [118]

      Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R. H.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Interface engineering of MoS2/Ni3S2 hetero-structures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. Int. Ed. 2016, 55, 6702-6707.  doi: 10.1002/anie.201602237

    119. [119]

      Diao, J. X.; Qiu, Y.; Liu, S. Q.; Wang, W. T.; Chen, K.; Li, H. L.; Yuan, W. Y.; Qu, Y. T.; Guo, X. H. Interfacial engineering of W2N/WC hetero-structures derived from solid-state synthesis: a highly efficient trifunctional electrocatalyst for ORR, OER, and HER. Adv. Mater. 2020, 32, 1905679.  doi: 10.1002/adma.201905679

    120. [120]

      Huang, H. W.; Jung, H.; Jun, H.; Woo, D. Y.; Han, J. W.; Lee, J. Design of grain boundary enriched bimetallic borides for enhanced hydrogen evolution reaction. Chem. Eng. J. 2021, 405, 126977.  doi: 10.1016/j.cej.2020.126977

    121. [121]

      Lao, J.; Li, D.; Jiang, C. L.; Luo, C. H.; Qi, R. J.; Lin, H. C.; Huang, R.; Waterhouse, G. I. N.; Peng, H. Synergistic effect of cobalt boride nanoparticles on MoS2 nanoflowers for a highly efficient hydrogen evolution reaction in alkaline media. Nanoscale 2020, 12, 10158-10165.  doi: 10.1039/C9NR10230B

    122. [122]

      Ren, Y. M.; Wang, J. J.; Hu, W. J.; Wen, H.; Qiu, Y. P.; Tang, P. P.; Chen, M. H.; Wang, P. Hierarchical nanostructured Co-Mo-B/CoMoO4-x amorphous composite for the alkaline hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2021, 13, 42605-42612.  doi: 10.1021/acsami.1c08350

    123. [123]

      Lin, Q.; Shang, C. Q.; Chen, Z. H.; Wang, X.; Zhou, G. F. Boron-doped molybdenum carbide as a pH-independent electrocatalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 30659-30665.  doi: 10.1016/j.ijhydene.2020.08.033

    124. [124]

      Cao, E. P.; Chen, Z. M.; Wu, H.; Yu, P.; Wang, Y.; Xiao, F.; Chen, S.; Du, S. C.; Xie, Y.; Wu, Y.; Ren, Z. Y. Boron-induced electronic-structure reformation of CoP nanoparticles drives enhanced pH-universal hydrogen evolution. Angew. Chem. Int. Ed. 2020, 59, 4154-4160.  doi: 10.1002/anie.201915254

    125. [125]

      Wu, J.; Zhang, Q.; Shen, K.; Zhao, R.; Zhong, W. D.; Yang, C. F.; Xiang, H.; Li, X. K.; Yang, N. J. Modulating interband energy separation of boron-doped Fe7S8/FeS2 electrocatalysts to boost alkaline hydrogen evolution reaction. Adv. Funct. Mater. 2021, 32, 2107802.

    126. [126]

      Liu, M. Y.; He, Q.; Huang, S. W.; Zou, W. H.; Cong, J.; Xiao, X. Q.; Li, P.; Cai, J. G.; Hou, L. X. NiCo-layered double hydroxide-derived B-doped CoP/Ni2P hollow nanoprisms as high-efficiency electrocatalysts for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2021, 13, 9932-9941.  doi: 10.1021/acsami.0c20294

    127. [127]

      Yang, H. Y.; Chen, Z. L.; Guo, P. F.; Fei, B.; Wu, R. B. B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction. Appl. Catal. B 2020, 261, 118240.  doi: 10.1016/j.apcatb.2019.118240

    128. [128]

      Ye, S. H.; Luo, F. Y.; Xu, T. T.; Zhang, P. Y.; Shi, H. D.; Qin, S. Q.; Wu, J. P.; He, C. X.; Ouyang, X. P.; Zhang, Q. L.; Liu, J. H.; Sun, X. L. Boosting the alkaline hydrogen evolution of Ru nanoclusters anchored on B/N-doped graphene by accelerating water dissociation. Nano Energy 2020, 68, 104301.  doi: 10.1016/j.nanoen.2019.104301

    129. [129]

      Bat-Erdene, M.; Batmunkh, M.; Sainbileg, B.; Hayashi, M.; Bati, A. S. R.; Qin, J. D.; Zhao, H. J.; Zhong, Y. L.; Shapter, J. G. Highly dispersed Ru nanoparticles on boron-doped Ti3C2Tx (MXene) nanosheets for synergistic enhancement of electrocatalytic hydrogen evolution. Small 2021, 17, 2102218.  doi: 10.1002/smll.202102218

    130. [130]

      Zhao, X.; Zheng, M.; Zhang, Z. Y.; Wang, Y. F.; Zhou, Y. T.; Zhou, X. H.; Zhang, H. B. Supramolecular nanosheet evolution into BC3N matrix improves the hydrogen evolution reaction activity in the pH universality of highly dispersed Pt nanoparticles. J. Mater. Chem. A 2021, 9, 16427-16435.  doi: 10.1039/D1TA04142H

    131. [131]

      Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. C. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196-2214.  doi: 10.1039/C9CS00607A

    132. [132]

      Gupta, S.; Jadhav, H.; Sinha, S.; Miotello, A.; Patel, M. K.; Sarkar, A.; Patel, N. Cobalt-boride nanostructured thin films with high performance and stability for alkaline water oxidation. ACS Sustain. Chem. Eng. 2019, 7, 16651-16658.  doi: 10.1021/acssuschemeng.9b03995

    133. [133]

      Liang, X. G.; Dong, R. T.; Li, D. P.; Bu, X. M.; Li, F. Z.; Shu, L.; Wei, R. J.; Ho, J. Coupling of nickel boride and Ni(OH)2 nanosheets with hierarchical interconnected conductive porous structure synergizes the oxygen evolution reaction. ChemCatChem 2018, 10, 4555-4561.  doi: 10.1002/cctc.201800993

    134. [134]

      Hong, Y. R.; Kim, K. M.; Ryu, J. H.; Mhin, S.; Kim, J.; Ali, G.; Chung, K. Y.; Kang, S.; Han, H. Dual-phase engineering of nickel boride-hydroxide nanoparticles toward high-performance water oxidation electrocatalysts. Adv. Funct. Mater. 2020, 30, 2004330.  doi: 10.1002/adfm.202004330

    135. [135]

      Leng, X.; Wu, K. H.; Su, B. J.; Jang, L. Y.; Gentle, I.; Wang, D. W. Hydrotalcite-wrapped Co-B alloy with enhanced oxygen evolution activity. Chin. J. Catal. 2017, 38, 1021-1027.  doi: 10.1016/S1872-2067(17)62811-0

    136. [136]

      Xie, C.; Wang, Y. Y.; Yan, D. F.; Tao, L.; Wang, S. Y. In situ growth of cobalt@cobalt-borate core-shell nanosheets as highly-efficient electrocatalysts for oxygen evolution reaction in alkaline/neutral medium. Nanoscale 2017, 9, 16059-16065.  doi: 10.1039/C7NR06054H

    137. [137]

      Chen, S.; Li, Y. Q.; Zhang, Z. H.; Fu, Q.; Bao, X. H. The synergetic effect of h-BN shells and subsurface B in CoBx@h-BN nanocatalysts for enhanced oxygen evolution reactions. J. Mater. Chem. A 2018, 6, 10644-10648.  doi: 10.1039/C8TA02312C

    138. [138]

      Zou, S. H.; Burke, M.; Kast, M.; Fan, J.; Danilovic, N.; Boettcher, S. Fe (Oxy)hydroxide oxygen evolution reaction electrocatalysis: intrinsic activity and the roles of electrical conductivity, substrate, and dissolution. Chem. Mater. 2015, 27, 8011-8020.  doi: 10.1021/acs.chemmater.5b03404

    139. [139]

      Liu, Q. H.; Zhao, H.; Jiang, M.; Kang, Q.; Zhou, W.; Wang, P. C.; Zhou, F. M. Boron enhances oxygen evolution reaction activity over Ni foam-supported iron boride nanowires. J. Mater. Chem. A 2020, 8, 13638-13645.  doi: 10.1039/C9TA14256H

    140. [140]

      Yuan, H. F.; Wang, S. M.; Gu, X. D.; Tang, B.; Li, J. P.; Wang, X. G. One-step solid-phase boronation to fabricate self-supported porous FeNiB/FeNi foam for efficient electrocatalytic oxygen evolution and overall water splitting. J. Mater. Chem. A 2019, 7, 19554-19564.  doi: 10.1039/C9TA04076E

    141. [141]

      Ren, H.; Sun, X. L.; Du, C. F.; Zhao, J.; Liu, D. B.; Fang, W.; Kumar, S.; Chua, R.; Meng, S.; Kidkhunthod, P.; Song, L.; Li, S. Q.; Madhavi, S.; Yan, Q. Y. Amorphous Fe-Ni-P-B-O nanocages as efficient electrocatalysts for oxygen evolution reaction. ACS Nano. 2019, 13, 12969-12979.  doi: 10.1021/acsnano.9b05571

    142. [142]

      Ji, X. Q.; Ren, X.; Hao, S.; Xie, F. Y.; Qu, F. L.; Du, G.; Asiri, A.; Sun, X. P. Remarkable enhancement of the alkaline oxygen evolution reaction activity of NiCo2O4 by an amorphous borate shell. Inorg. Chem. Front. 2017, 4, 1546-1550.  doi: 10.1039/C7QI00340D

    143. [143]

      Gorlin, M.; Ferreira de Araujo, J.; Schmies, H.; Bernsmeier, D.; Dresp, S.; Gliech, M.; Jusys, Z.; Chernev, P.; Kraehnert, R.; Dau, H.; Strasser, P. Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH. J. Am. Chem. Soc. 2017, 139, 2070-2082.  doi: 10.1021/jacs.6b12250

    144. [144]

      Nsanzimana, J. M. V.; Gong, L. Q.; Dangol, R.; Reddu, V.; Jose, V.; Xia, B. Y.; Yan, Q. Y.; Lee, J. M.; Wang, X. Tailoring of metal boride morphology via anion for efficient water oxidation. Adv. Energy Mater. 2019, 9, 1901503.  doi: 10.1002/aenm.201901503

    145. [145]

      Chen, H. Y.; Chen, J. X.; Ning, P.; Chen, X.; Liang, J. H.; Yao, X.; Chen, D.; Qin, L. S.; Huang, Y. X.; Wen, Z. H. 2D heterostructure of amorphous CoFeB coating black phosphorus nanosheets with optimal oxygen intermediate absorption for improved electrocatalytic water oxidation. ACS Nano. 2021, 15, 12418-12428.  doi: 10.1021/acsnano.1c04715

    146. [146]

      Mao, H.; Guo, X.; Fu, Y. L.; Yang, H. R.; Zhang, Y.; Zhang, R.; Song, X. M. Enhanced electrolytic oxygen evolution by the synergistic effects of trimetallic FeCoNi boride oxides immobilized on polypyrrole/reduced graphene oxide. J. Mater. Chem. A 2020, 8, 1821-1828.  doi: 10.1039/C9TA10756H

    147. [147]

      Chua, X. J.; Luxa, J.; Eng, A. Y. S.; Tan, S. M.; Sofer, Z.; Pumera, M. Negative electrocatalytic effects of p-doping niobium and tantalum on MoS2 and WS2 for the hydrogen evolution reaction and oxygen reduction reaction. ACS Catal. 2016, 6, 5724-5734.  doi: 10.1021/acscatal.6b01593

    148. [148]

      Haq, T.; Mansour, S. A.; Munir, A.; Haik, Y. Gold-supported gadolinium doped CoB amorphous sheet: a new benchmark electrocatalyst for water oxidation with high turnover frequency. Adv. Func. Mater. 2020, 30, 1910309.  doi: 10.1002/adfm.201910309

    149. [149]

      Kwon, J.; Han, H.; Jo, S.; Choi, S.; Chung, K. Y.; Ali, G.; Park, K.; Paik, U.; Song, T. Amorphous nickel-iron borophosphate for a robust and efficient oxygen evolution reaction. Adv. Energy Mater. 2021, 11, 2100624.  doi: 10.1002/aenm.202100624

    150. [150]

      Sun, S.; Zhai, T.; Liang, C. L.; Savilov, S. V.; Xia, H. Boosted crystalline/amorphous Fe2O3-δ core/shell heterostructure for flexible solid-state pseudocapacitors in large scale. Nano Energy 2018, 45, 390-397.  doi: 10.1016/j.nanoen.2018.01.015

    151. [151]

      Wu, L. B.; Yu, L.; Zhu, Q. C.; McElhenny, B.; Zhang, F. H.; Wu, C. Z.; Xing, X. X.; Bao, J. M.; Chen, S.; Ren, Z. F. Boron-modified cobalt iron layered double hydroxides for high efficiency seawater oxidation. Nano Energy 2021, 83, 105838.  doi: 10.1016/j.nanoen.2021.105838

    152. [152]

      Zhang, K.; Zhang, G.; Qu, J. H.; Liu, H. J. Disordering the atomic structure of Co(II) oxide via B-doping: an efficient oxygen vacancy introduction approach for high oxygen evolution reaction electrocatalysts. Small 2018, 14, 1802760.  doi: 10.1002/smll.201802760

    153. [153]

      Cheng, Z. F.; Pi, Y. C.; Shao, Q.; Huang, X. Q. Boron-doped amorphous iridium oxide with ultrahigh mass activity for acidic oxygen evolution reaction. Sci. China Mater. 2021, 64, 2958-2966.  doi: 10.1007/s40843-021-1687-5

    154. [154]

      Zuo, Y. P.; Rao, D. W.; Ma, S. N.; Li, T. T.; Tsang, Y. H.; Kment, S.; Chai, Y. Valence engineering via dual-cation and boron doping in pyrite selenide for highly efficient oxygen evolution. ACS Nano. 2019, 13, 11469-11476.  doi: 10.1021/acsnano.9b04956

    155. [155]

      Jiang, Z. Q.; Jiang, Z. J.; Maiyalagan, T.; Manthiram, A. Cobalt oxide-coated N- and B-doped graphene hollow spheres as bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions. J. Mater. Chem. A 2016, 4, 5877-5889.  doi: 10.1039/C6TA01349J

    156. [156]

      Glavin, N.; Muratore, C.; Jespersen, M.; Hu, J.; Hagerty, P.; Hilton, A. M.; Blake, A. T.; Grabowski, C. A.; Durstock, M.; McConney, M.; Hilgefort, D.; Fisher, T. S.; Voevodin, A. Amorphous boron nitride: a universal, ultrathin dielectric for 2D nanoelectronics. Adv. Funct. Mater. 2016, 26, 2640-2647.  doi: 10.1002/adfm.201505455

    157. [157]

      Liu, H.; Zhang, X. H.; Li, Y. X.; Li, X.; Dong, C. K.; Wu, D. Y.; Tang, C. C.; Chou, S. L.; Fang, F.; Du, X. W. Conductive boron nitride as promising catalyst support for the oxygen evolution reaction. Adv. Energy Mater. 2020, 10, 1902521.  doi: 10.1002/aenm.201902521

    158. [158]

      Liu, X. X.; Wang, Y. H.; Chen, L. B.; Chen, P. P.; Jia, S. P.; Zhang, Y.; Zhou, S. Y.; Zang, J. B. Co2B and Co nanoparticles immobilized on the N-B-doped carbon derived from nano-B4C for efficient catalysis of oxygen evolution, hydrogen evolution, and oxygen reduction reactions. ACS Appl. Mater. Interfaces 2018, 10, 37067-37078.  doi: 10.1021/acsami.8b13359

    159. [159]

      Zhao, W. N.; Xu, T.; Li, T.; Wang, Y. K.; Liu, H.; Feng, J. Z.; Ding, S. J.; Li, Z. T.; Wu, M. B. Amorphous iron(III)-borate nanolattices as multifunctional electrodes for self-driven overall water splitting and rechargeable zinc-air battery. Small 2018, 14, 1802829.  doi: 10.1002/smll.201802829

    160. [160]

      Tian, R. F.; Zhao, S. J.; Li, J. K.; Chen, Z. B.; Peng, W. F.; He, Y.; Zhang, L. L.; Yan, S.; Wu, L. L.; Ahuja, R.; Gou, H. Y. Pressure-promoted highly-ordered Fe-doped-Ni2B for effective oxygen evolution reaction and overall water splitting. J. Mater. Chem. A 2021, 9, 6469-6475.  doi: 10.1039/D0TA10010B

    161. [161]

      Saad, A.; Gao, Y.; Owusu, K. A.; Liu, W.; Wu, Y. Y.; Ramiere, A.; Guo, H. C.; Tsiakaras, P.; Cai, X. K. Ternary Mo2NiB2 as a superior bifunctional electrocatalyst for overall water splitting. Small 2022, 18, 2104303.  doi: 10.1002/smll.202104303

    162. [162]

      Xu, Y. L.; Wang, C.; Huang, Y. H.; Fu, J. Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy 2021, 80, 105545.  doi: 10.1016/j.nanoen.2020.105545

    163. [163]

      Liu, H. X.; Li, X. Y.; Chen, L. L.; Zhu, X. D.; Dong, P.; Chee, M. O. L.; Ye, M. X.; Guo, Y. H.; Shen, J. F. Monolithic Ni-Mo-B bifunctional electrode for large current water splitting. Adv. Funct. Mater. 2021, 32, 2107308.

    164. [164]

      Wu, Z. X.; Nie, D. Z.; Song, M.; Jiao, T. T.; Fu, G. T.; Liu, X. E. Facile synthesis of Co-Fe-B-P nanochains as an efficient bifunctional electrocatalyst for overall water-splitting. Nanoscale 2019, 11, 7506-7512.  doi: 10.1039/C9NR01794A

    165. [165]

      Qiang, C. C.; Zhang, L.; He, H. L.; Liu, Y. Y.; Zhao, Y. Y.; Sheng, T.; Liu, S. J.; Wu, X. L.; Fang, Z. Efficient electrocatalytic water splitting by bimetallic cobalt iron boride nanoparticles with controlled electronic structure. J. Colloid Interface Sci. 2021, 604, 650-659.  doi: 10.1016/j.jcis.2021.07.024

    166. [166]

      Li, Y. J.; Huang, B. L.; Sun, Y. J.; Luo, M. C.; Yang, Y.; Qin, Y. N.; Wang, L.; Li, C. J.; Lv, F.; Zhang, W. Y.; Guo, S. J. Multimetal borides nanochains as efficient electrocatalysts for overall water splitting. Small 2019, 15, 1804212.  doi: 10.1002/smll.201804212

    167. [167]

      Hu, Q.; Li, G. M.; Han, Z.; Wang, Z. Y.; Huang, X. W.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X. General synthesis of ultrathin metal borate nanomeshes enabled by 3D bark-like N-doped carbon for electrocatalysis. Adv. Energy Mater. 2019, 9, 1901130.  doi: 10.1002/aenm.201901130

    168. [168]

      Cheng, Y.; Pang, K. L.; Xu, X. H.; Yuan, P. F.; Zhang, Z. G.; Wu, X.; Zheng, L. R.; Zhang, J. N.; Song, R. Borate crosslinking synthesis of structure tailored carbon-based bifunctional electrocatalysts directly from guar gum hydrogels for efficient overall water splitting. Carbon 2020, 157, 153-163.  doi: 10.1016/j.carbon.2019.10.024

    169. [169]

      Anjum, M. A. R.; Lee, M. H.; Lee, J. S. Boron- and nitrogen-codoped molybdenum carbide nanoparticles imbedded in a BCN network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. ACS Catal. 2018, 8, 8296-8305.  doi: 10.1021/acscatal.8b01794

    170. [170]

      Xu, H. B.; Fei, B.; Cai, G. H.; Ha, Y.; Liu, J.; Jia, H. X.; Zhang, J. C.; Liu, M.; Wu, R. B. Boronization‐induced ultrathin 2D nanosheets with abundant crystalline-amorphous phase boundary supported on nickel foam toward efficient water splitting. Adv. Energy Mater. 2019, 10, 1902714.

    171. [171]

      Yuan, H. F.; Wang, S. M.; Ma, Z. Z.; Kundu, M.; Tang, B.; Li, J. P.; Wang, X. G. Oxygen vacancies engineered self-supported B doped Co3O4 nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride. Chem. Eng J. 2021, 404, 126474.  doi: 10.1016/j.cej.2020.126474

    172. [172]

      Shi, D.; Chang, B.; Ai, Z. Z.; Jiang, H. H.; Chen, F. Z.; Shao, Y. G.; Shen, J. X.; Wu, Y. Z.; Hao, X. P. Boron carbonitride with tunable B/N Lewis acid/base sites for enhanced electrocatalytic overall water splitting. Nanoscale 2021, 13, 2849-2854.  doi: 10.1039/D0NR06857H

    173. [173]

      Chodvadiya, D.; Som, N. N.; Jha, P. K.; Chakraborty, B. Enhancement in the catalytic activity of two-dimensional α-CN by B, Si and P doping for hydrogen evolution and oxygen evolution reactions. Int. J. Hydrogen Energy 2021, 46, 22478-22498.  doi: 10.1016/j.ijhydene.2021.04.080

    174. [174]

      Zhang, H. X.; Liu, M.; Bu, X. H.; Zhang, J. Zeolitic BIF crystal directly producing noble-metal nanoparticles in its pores for catalysis. Sci. Rep. 2014, 4, 3923.

    175. [175]

      Liu, M. R.; Hong, Q. L.; Li, Q. H.; Du, Y. H.; Zhang, H. X.; Chen, S. M.; Zhou, T. H.; Zhang, J. Cobalt boron imidazolate framework derived cobalt nanoparticles encapsulated in B/N codoped nanocarbon as efficient bifunctional electrocatalysts for overall water splitting. Adv. Funct. Mater. 2018, 28, 1801136.  doi: 10.1002/adfm.201801136

    176. [176]

      Zheng, Y.; Jiao Y.; Zhu, Y. H.; Cai, Q. R.; Vasileff, A.; Li, L. H.; Han, Y.; Chen, Y.; Qiao, S. Z. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 2017, 139, 3336-3339.  doi: 10.1021/jacs.6b13100

    177. [177]

      Tang, S. B.; Zhou, X. H.; Liu, T. Y.; Zhang, S. Y.; Yang, T. T.; Luo, Y.; Sharman, E.; Jiang, J. Single nickel atom supported on hybridized graphene-boron nitride nanosheet as a highly active bi-functional electrocatalyst for hydrogen and oxygen evolution reactions. J. Mater. Chem. A 2019, 7, 26261-26265.  doi: 10.1039/C9TA10500J

  • 加载中
    1. [1]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    2. [2]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    3. [3]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    4. [4]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    5. [5]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    6. [6]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    7. [7]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    8. [8]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    9. [9]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    10. [10]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    11. [11]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    12. [12]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    13. [13]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    14. [14]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    15. [15]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    16. [16]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    17. [17]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    18. [18]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    19. [19]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    20. [20]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

Metrics
  • PDF Downloads(93)
  • Abstract views(1211)
  • HTML views(244)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return