Citation: Hongnan Jia, Na Yao, Juan Zhu, Yujia Liu, Yunhao Lao, Hengjiang Cong, Wei Luo. Ni3N Modified MOF Heterostructure with Tailored Electronic Structure for Efficient Overall Water Splitting[J]. Chinese Journal of Structural Chemistry, ;2022, 41(8): 220803. doi: 10.14102/j.cnki.0254-5861.2022-0112 shu

Ni3N Modified MOF Heterostructure with Tailored Electronic Structure for Efficient Overall Water Splitting

  • Corresponding author: Hengjiang Cong, conghj@whu.edu.cn Wei Luo, wluo@whu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 7 May 2022
    Accepted Date: 20 May 2022
    Available Online: 30 May 2022

Figures(5)

  • Exploring bifunctional electrocatalysts with high-efficiency and stability toward overall water splitting is desirable for sustainable energy technologies, yet challenging. Herein, we report the construction of Ni3N on the surface of Ni-MOF-74 through an in-situ nitriding process. The obtained Ni-MOF-74/Ni3N exhibits remarkable HER activity with an overpotential of 73 mV to deliver 10 mA cm−2. Theoretical calculations and experimental study demonstrate the electron transport between Ni3N and Ni-MOF-74, leading to the improved H2O adsorption, optimized hydrogen adsorption, and increased Had diffusion, which contributes to the enhanced HER performance. Besides, the obtained Ni-MOF-74/Ni3N also possesses outstanding activity toward OER and overall water splitting.
  • 加载中
    1. [1]

      Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003.  doi: 10.1038/s41570-016-0003

    2. [2]

      Long, X. Y.; Meng, J. Z.; Gu, J. B.; Ling, L. Q.; Li, Q. W.; Liu, N.; Wang, K. W.; Li, Z. Q. Interfacial engineering of NiFeP/NiFe-LDH heterojunction for efficient overall water splitting. Chin. J. Struct. Chem. 2022, 41, 2204046-2204053.

    3. [3]

      Luo, X.; Ji, P. X.; Wang, P. Y.; Cheng, R. L.; Chen, D.; Lin, C.; Zhang, J. N.; He, J. W.; Shi, Z. H.; Li, N.; Xiao, S. Q.; Mu, S. C. Interface engineering of hierarchical branched Mo-doped Ni3S2/NixPy hollow heterostructure nanorods for efficient overall water splitting. Adv. Energy Mater. 2020, 10, 1903891.  doi: 10.1002/aenm.201903891

    4. [4]

      Wu, H. S.; Miao, T. F.; Shi, H. X.; Xu, Y.; Fu, X. L.; Qian, L. Probing photocatalytic hydrogen evolution of cobalt complexes: experimental and theoretical methods. Chin. J. Struct. Chem. 2021, 40, 1696-1709.

    5. [5]

      Yin, Q. S.; Tan, J. M.; Besson, C.; Geletii, Y. V.; Musaev, D. G.; Kuznetsov, A. E.; Luo, Z.; Hardcastle, K. I.; Hill, C. L. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 2010, 328, 342-345.  doi: 10.1126/science.1185372

    6. [6]

      Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A Perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383-1385.  doi: 10.1126/science.1212858

    7. [7]

      Yao, N.; Wang, G. W.; Jia, H. N.; Yin, J. L.; Cong, H. J.; Chen, S. L.; Luo, W. Intermolecular energy gap-induced formation of high-valent cobalt species in CoOOH surface layer on cobalt sulphides for efficient water oxidation. Angew. Chem. Int. Ed. 2022, e202117178.

    8. [8]

      Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337-365.  doi: 10.1039/C6CS00328A

    9. [9]

      Han, L.; Dong, S. J.; Wang, E. K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 9266-9291.  doi: 10.1002/adma.201602270

    10. [10]

      Yao, N.; Fan, Z.; Xia, Z. J.; Wu, F.; Zhao, P. P.; Cheng, G. Z.; Luo, W. Constructing the CoO/Co4N heterostructure with an optimized electronic structure to boost alkaline hydrogen evolution electrocatalysis. J. Mater. Chem. A 2021, 9, 18208-18212.  doi: 10.1039/D1TA04691H

    11. [11]

      Li, M.; Feng, L. G. NiSe2-CoSe2 with a hybrid nanorods and nanoparticles structure for efficient oxygen evolution reaction. Chin. J. Struct. Chem. 2022, 41, 2201019-2201024.

    12. [12]

      Li, P. Y.; Hong, W. T.; Liu, W. Fabrication of large scale self-supported WC/Ni(OH)2 electrode for high-current-density hydrogen evolution. Chin. J. Struct. Chem. 2021, 40, 1365-1371.

    13. [13]

      McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347-4357.  doi: 10.1021/ja510442p

    14. [14]

      Wu, Y. L.; Li, X. F.; Wei, Y. S.; Fu, Z. M.; Wei, W. B.; Wu, X. T.; Zhu, Q. L.; Xu, Q. Ordered macroporous superstructure of nitrogen-doped nanoporous carbon implanted with ultrafine Ru nanoclusters for efficient pH-universal hydrogen evolution reaction. Adv. Mater. 2021, 33, 2006965.  doi: 10.1002/adma.202006965

    15. [15]

      Wang, J.; Cheng, C.; Yuan, Q.; Yang, H.; Meng, F. Q.; Zhang, Q. H.; Gu, L.; Cao, J. L.; Li, L. G.; Haw, S. C.; Shao, Q.; Zhang, L.; Cheng, T.; Jiao, F.; Huang, X. Q. Exceptionally active and stable RuO2 with interstitial carbon for water oxidation in acid. Chem 2022, 8, 1-15.  doi: 10.1016/j.chempr.2021.12.020

    16. [16]

      Ni, W. Y.; Krammer, A.; Hsu, C. S.; Chen, H. M.; Schüler, A.; Hu, X. L. Ni3N as an active hydrogen oxidation reaction catalyst in alkaline medium. Angew. Chem. Int. Ed. 2019, 58, 7445-7449.  doi: 10.1002/anie.201902751

    17. [17]

      Li, X. R.; Wei, J. L.; Li, Q.; Zheng, S. S.; Xu, Y. X.; Du, P.; Chen, C. Y.; Zhao, J. Y.; Xue, H. G.; Xu, Q.; Pang, H. Nitrogen-doped cobalt oxide nanostructures derived from cobalt-alanine complexes for high-performance oxygen evolution reactions. Adv. Funct. Mater. 2018, 28, 1800886.  doi: 10.1002/adfm.201800886

    18. [18]

      Yu, L.; Zhu, Q.; Song, S. W.; McElhenny, B.; Wang, D. Z.; Wu, C. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.  doi: 10.1038/s41467-019-13092-7

    19. [19]

      Chen, Q. M.; Gong, N.; Zhu, T. R.; Yang, C. Y.; Peng, W. C.; Li, Y.; Zhao, F. B.; Fan, X. B. Surface phase engineering modulated iron-nickel nitrides/alloy nanospheres with tailored d‐band center for efficient oxygen evolution reaction. Small 2022, 18, 2105696.  doi: 10.1002/smll.202105696

    20. [20]

      Li, P.; Chen, R.; Zhao, S. E.; Li, W. Q.; Lin, Y. N.; Yu, Y. Architecture control and electronic structure engineering over Ni-based nitride nanocomposite for boosting ammonia borane dehydrogenation. Appl. Catal., B 2021, 298, 120523.  doi: 10.1016/j.apcatb.2021.120523

    21. [21]

      Kwon, T.; Jun, M.; Joo, J.; Lee, K. Nanoscale hetero-interfaces between metals and metal compounds for electrocatalytic applications. J. Mater. Chem. A 2019, 7, 5090-5110.  doi: 10.1039/C8TA09494B

    22. [22]

      Su, L. X.; Gong, D.; Yao, N.; Li, Y. B.; Li, Z.; Luo, W. Modification of the intermediate binding energies on Ni/Ni3N heterostructure for enhanced alkaline hydrogen oxidation reaction. Adv. Funct. Mater. 2021, 31, 2106156.  doi: 10.1002/adfm.202106156

    23. [23]

      Yao, N.; Meng, R.; Su, J.; Fan, Z. Y.; Zhao, P. P.; Luo, W. Dual-phase engineering of MoN/Co4N with tailored electronic structure for enhanced hydrogen evolution. Chem. Eng. J. 2021, 421, 127757.  doi: 10.1016/j.cej.2020.127757

    24. [24]

      Xiao, X.; Zou, L. L.; Pang, H.; Xu, Q. Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 2020, 49, 301-331.  doi: 10.1039/C7CS00614D

    25. [25]

      Jiao, L.; Wang, Y.; Jiang, H. L. Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.  doi: 10.1002/adma.201703663

    26. [26]

      Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J.; Lv, J. W.; Wang, J. X.; Zhang, J. Q.; Khattak, A. M.; Khan, N. A.; Wei, Z. X.; Zhang, J.; Liu, S. Q.; Zhao, H. J.; Tang, Z. Y. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.  doi: 10.1038/nenergy.2016.184

    27. [27]

      Jia, H. N.; Han, Q.; Luo, W.; Cong, H. J.; Deng, H. X. Sequence control of metals in MOF by coordination number precoding for electrocatalytic oxygen evolution. Chem. Catal. 2022, 2, 84-101.  doi: 10.1016/j.checat.2021.10.007

    28. [28]

      Zhuge, R. X.; Shi, P. C.; Zhang, T. MOF-conductive polymer composite film as electrocatalyst for oxygen reduction in acidic media. Chin. J. Struct. Chem. 2022, 41, 2203062-2203069.

    29. [29]

      Wu, Y. L.; Xie, N.; Li, X. F.; Fu, Z. M.; Wu, X. T.; Zhu, Q. L. MOF-derived hierarchical hollow NiRu-C nanohybrid for efficient hydrogen evolution reaction. Chin. J. Struct. Chem. 2021, 40, 1346-1356.

    30. [30]

      Deng, H. X.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S.; Kazumori, H.; O'Keeffe, M.; Terasaki, O.; Stoddart, J. F.; Yaghi, O. M. Large-pore apertures in a series of metal-organic frameworks. Science 2012, 336, 1018-1023.  doi: 10.1126/science.1220131

    31. [31]

      Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O'Keeffe, M.; Yaghi, O. M. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 2005, 127, 1504-1518.  doi: 10.1021/ja045123o

    32. [32]

      Shinde, P. A.; Park, S.; Chodankar, N. R.; Park, S.; Han, Y. K.; Olabi, A. G.; Chana, J. S.; Hierarchically designed 3D Cu3N@Ni3N porous nanorod arrays: an efficient and robust electrode for high-energy solid-state hybrid supercapacitors. Appl. Mater. Today 2021, 22, 100951.  doi: 10.1016/j.apmt.2021.100951

    33. [33]

      Liu, T. T.; Li, M.; Bo, X. J.; Zhou, M. Comparison study toward the influence of the second metals doping on the oxygen evolution activity of cobalt nitrides. ACS Sustain. Chem. Eng. 2018, 6, 11457-11465.  doi: 10.1021/acssuschemeng.8b01510

    34. [34]

      Li, H. Y.; Gong, H. M.; Jin, Z. L. Phosphorus modified Ni-MOF-74/BiVO4 S-scheme heterojunction for enhanced photocatalytic hydrogen evolution. Appl. Catal. B-Environ. 2022, 307, 121166.  doi: 10.1016/j.apcatb.2022.121166

    35. [35]

      Yao, N.; Jia, H. N.; Fan, Z. Y.; Bai, L.; Xie, W.; Cong, H. J.; Chen, S. L.; Luo, W. Nitridation-induced metal-organic framework nanosheet for enhanced water oxidation electrocatalysis. J. Energy Chem. 2022, 64, 531-537.  doi: 10.1016/j.jechem.2021.05.024

    36. [36]

      Xu, K.; Chen, P. Z.; Li, X. L.; Tong, Y.; Ding, H.; Wu, X. J.; Chu, W. S.; Peng, Z. M.; Wu, C. Z.; Xie, Y. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J. Am. Chem. Soc. 2015, 137, 4119-4125.  doi: 10.1021/ja5119495

    37. [37]

      Duan, Y.; Yu, Z. Y.; Yang, L.; Zheng, L. R.; Zhang, C. T.; Yang, X. T.; Gao, F. Y.; Zhang, X. L.; Yu, X. X.; Liu, R.; Ding, H. H.; Gu, C.; Zheng, X. S.; Shi, L.; Jiang, J.; Zhu, J. F.; Gao, M. R.; Yu, S. H. Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes. Nat. Commun. 2020, 11, 4789.  doi: 10.1038/s41467-020-18585-4

    38. [38]

      He, W. H.; Ifraemov, R.; Raslin, A.; Hod, I. Room-temperature electrochemical conversion of metal-organic frameworks into porous amorphous metal sulfides with tailored composition and hydrogen evolution activity. Adv. Funct. Mater. 2018, 28, 1707244.  doi: 10.1002/adfm.201707244

    39. [39]

      Yang, F. L.; Han, P. Y.; Yao, N.; Cheng, G. Z.; Chen, S. L.; Luo, W. Inter-regulated d-band centers of the Ni3B/Ni heterostructure for boosting hydrogen electrooxidation in alkaline media. Chem. Sci. 2020, 11, 12118.  doi: 10.1039/D0SC03917A

    40. [40]

      Chen, P. Z.; Zhou, T. P.; Chen, M. L.; Tong, Y.; Zhang, N.; Peng, X.; Chu, W. S.; Wu, X. J.; Wu, C. Z.; Xie, Y. Enhanced catalytic activity in nitrogen-anion modified metallic cobalt disulfide porous nanowire arrays for hydrogen evolution. ACS Catal. 2017, 7, 7405-7411.  doi: 10.1021/acscatal.7b02218

    41. [41]

      Deng, J.; Ren, P. J.; Deng, D. H.; Yu, L.; Yang, F.; Bao, X. H. Highly active and durable non- precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 1919-1923.  doi: 10.1039/C4EE00370E

    42. [42]

      Tian, X. Y.; Zhao, P. C.; Sheng, W. C. Hydrogen evolution and oxidation: mechanistic studies and material advances. Adv. Mater. 2019, 31, 1808066.  doi: 10.1002/adma.201808066

    43. [43]

      Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. -A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255-2260.  doi: 10.1039/C4EE00440J

    44. [44]

      Zhou, Q. W.; Shen, Z. H.; Zhu, C.; Li, J. C.; Ding, Z. Y.; Wang, P.; Pan, F.; Zhang, Z. Y.; Ma, H. X.; Wang, S. Y.; Zhang, H. G. Nitrogen-doped CoP electrocatalysts for coupled hydrogen evolution and sulfur generation with low energy consumption. Adv. Mater. 2018, 30, 1800140.  doi: 10.1002/adma.201800140

    45. [45]

      Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem. Int. Ed. 2012, 51, 12495-12498.  doi: 10.1002/anie.201204842

    46. [46]

      Geng, S.; Tian, F. Y.; Li, M. G.; Guo, X.; Yu, Y. S.; Yang, W. W.; Hou, Y. L. Hole-rich CoP nanosheets with an optimized d-band center for enhancing pH-universal hydrogen evolution electrocatalysis. J. Mater. Chem. A 2021, 9, 8561-8567.  doi: 10.1039/D1TA00044F

    47. [47]

      Miner, E. M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dincă, M. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun. 2016, 7, 10942.  doi: 10.1038/ncomms10942

    48. [48]

      Yang, Y.; Dang, L. N.; Shearer, M. J.; Sheng, H. Y.; Li, W. J.; Chen, J.; Peng, X.; Zhang, Y. H.; Hamers, R. J.; Jin, S. Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1703189.  doi: 10.1002/aenm.201703189

    49. [49]

      Li, F. L.; Wang, P. T.; Huang, X. Q.; Young, D. J.; Wang, H. F.; Braunstein, P.; Lang, J. P. Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation. Angew. Chem. Int. Ed. 2019, 58, 7051-7056.  doi: 10.1002/anie.201902588

  • 加载中
    1. [1]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    2. [2]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    3. [3]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    4. [4]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    5. [5]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    6. [6]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    7. [7]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    8. [8]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    9. [9]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    10. [10]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    11. [11]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    12. [12]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    13. [13]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    14. [14]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    18. [18]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    19. [19]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    20. [20]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

Metrics
  • PDF Downloads(4)
  • Abstract views(223)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return