Citation: Jiahe Peng, Xiao Wang, Zheng Wang, Bin Liu, Peng Zhang, Xin Li, Neng Li. Uncovering the Mechanism for Urea Electrochemical Synthesis by Coupling N2 and CO2 on Mo2C-MXene[J]. Chinese Journal of Structural Chemistry, ;2022, 41(9): 220909. doi: 10.14102/j.cnki.0254-5861.2022-0100 shu

Uncovering the Mechanism for Urea Electrochemical Synthesis by Coupling N2 and CO2 on Mo2C-MXene

Figures(10)

  • In this work, the catalytic activities of Mo2C-MXene for the co-synthesis of urea from N2 and CO2 are reported by well-defined density functional theory (DFT) method. The calculated results show that the presence of surface functional groups is not conducive to the CO2/N2 (C/N) coupling process in urea synthesis reaction. The exposed Mo2C on the surface can realize urea synthesis at the limit point of 0.69 eV, but the large transition state energy barrier (1.50 eV) indicates that bare Mo2C is not a promising urea catalyst. Loading single atoms can improve the urea synthesis performance of bare Mo2C. The energy barrier of urea synthesis reaction and the transition state energy barrier of C/N coupling reaction have dropped significantly by the atomic loading of Fe and Ti on bare Mo2C. Moreover, Ti doped Mo2C exhibits better catalytic selectivity toward urea production, making it an excellent catalyst for urea synthesis. We hope this work can pave the way for the electrochemical synthesis of urea.
  • 加载中
    1. [1]

      Comer, B. M.; Fuentes, P.; Dimkpa, C. O.; Liu, Y. -H.; Fernandez, C. A.; Arora, P.; Realff, M.; Singh, U.; Hatzell, M. C.; Medford, A. J. Prospects and challenges for solar fertilizers. Joule 2019, 3, 1578.  doi: 10.1016/j.joule.2019.05.001

    2. [2]

      Ying, H.; Zhang, Y.; Cheng, J. Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun. 2014, 5, 3218.  doi: 10.1038/ncomms4218

    3. [3]

      Witte, C. -P. Urea metabolism in plants. Plant Sci. (Amsterdam, Neth. ) 2011, 180, 431.

    4. [4]

      Summar, M. L.; Koelker, S.; Freedenberg, D.; Le Mons, C.; Haberle, J.; Lee, H. -S.; Kirmse, B. The incidence of urea cycle disorders. Mol. Genet. Metab. 2013, 110, 179.  doi: 10.1016/j.ymgme.2013.07.008

    5. [5]

      Fawcett, J. K.; Scott, J. E. A rapid and precise method for the determination of urea. J. Clin. Pathol. 1960, 13, 156.  doi: 10.1136/jcp.13.2.156

    6. [6]

      Li, Q.; Guo, Y.; Tian, Y.; Liu, W.; Chu, K. Activating VS2 basal planes for enhanced NRR electrocatalysis: the synergistic role of S-vacancies and B dopants. J. Mater. Chem. A 2020, 8, 16195.

    7. [7]

      Swain, G.; Sultana, S.; Parida, K. Constructing a novel surfactant-free MoS2 nanosheet modified MgIn2S4 marigold microflower: an efficient visible-light driven 2D-2D p-n heterojunction photocatalyst toward HER and pH regulated NRR. ACS Sustain. Chem. Eng. 2020, 8, 4848.  doi: 10.1021/acssuschemeng.9b07821

    8. [8]

      Zhao, S.; Lu, X.; Wang, L.; Gale, J.; Amal, R. Carbon-based metal-free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions. Adv. Mater. 2019, 31, 1805367.

    9. [9]

      Ren, Y.; Yu, C.; Tan, X.; Huang, H.; Wei, Q.; Qiu, J. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: challenges and perspectives. Energy Environ. Sci. 2021, 14, 1176.

    10. [10]

      Boron, W. F.; Deweer, P. Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J. Gen. Physiol. 1976, 67, 91.  doi: 10.1085/jgp.67.1.91

    11. [11]

      Krupa, S. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environ. Pollut. 2003, 124, 179.

    12. [12]

      Han, L.; Cai, S.; Gao, M.; Hasegawa, J. -Y.; Wang, P.; Zhang, J.; Shi, L.; Zhang, D. Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects. Chem. Rev. 2019, 119, 10916.

    13. [13]

      Qi, G.; Yang, R. T.; Chang, R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Appl. Catal. B: Environ. 2004, 51, 93.

    14. [14]

      Zhao, D.; Chen, Z.; Yang, W.; Liu, S.; Zhang, X.; Yu, Y.; Cheong, W. -C.; Zheng, L.; Ren, F.; Ying, G.; Cao, X; Wang, D. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 2019, 141, 4086.

    15. [15]

      Lacombe, M.; Loiseau, B.; Richard, J.; Mau, R. V.; Côté, J.; Pires, P.; De, Tourreil, R. Parametrization of the Paris N-N potential. Phys. Rev. C 1980, 21, 861.

    16. [16]

      Stoks, V.; Klomp, R.; Terheggen, C.; De, Swart, J. Construction of high-quality NN potential models. Phys. Rev. C 1994, 49, 2950.

    17. [17]

      Chen, X.; Li, N.; Kong, Z.; Ong, W. -J.; Zhao, X. Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects. Mater. Horizons 2018, 5, 9.

    18. [18]

      Chen, X.; Ong, W. -J.; Zhao, X.; Zhang, P.; Li, N. Insights into electrochemical nitrogen reduction reaction mechanisms: combined effect of single transition-metal and boron atom. J. Energy Chem. 2021, 58, 577.

    19. [19]

      Chen, X.; Zhao, X.; Kong, Z.; Ong, W. -J.; Li, N. Unravelling the electrochemical mechanisms for nitrogen fixation on single transition metal atoms embedded in defective graphitic carbon nitride. J. Mater. Chem. A 2018, 6, 21941.

    20. [20]

      Kim, Y. -G.; Baricuatro, J. H.; Javier, A.; Gregoire, J. M.; Soriaga, M. P. The evolution of the polycrystalline copper surface, first to Cu(111) and then to Cu(100), at a fixed CO2RR potential: a study by operando EC-STM. Langmuir 2014, 30, 15053.

    21. [21]

      Todorova, T. K.; Schreiber, M. W.; Fontecave, M. Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. ACS Catal. 2019, 10, 1754.

    22. [22]

      Liu, S.; Yang, H. B.; Hung, S. F.; Ding, J.; Cai, W.; Liu, L.; Gao, J.; Li, X.; Ren, X.; Kuang, Z. Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst. Angew. Chem. Int. Ed. 2020, 59, 798.

    23. [23]

      Meessen, J. Urea synthesis. Chem-Ing-Tech. 2014, 86, 2180.

    24. [24]

      Msall, M.; Batshaw, M. L.; Suss, R.; Brusilow, S. W.; Mellits, E. D. Neurologic outcome in children with inborn errors of urea synthesis: outcome of urea-cycle enzymopathies. N. Engl. J. Med. 1984, 310, 1500.

    25. [25]

      Batshaw, M. L.; Brusilow, S.; Waber, L.; Blom, W.; Brubakk, A. M.; Burton, B. K.; Cann, H. M.; Kerr, D.; Mamunes, P.; Matalon, R. Treatment of inborn errors of urea synthesis: activation of alternative pathways of waste nitrogen synthesis and excretion. N. Engl. J. Med. 1982, 306, 1387.

    26. [26]

      Sharma, S.; Basavaraju, K. C.; Singh, A. K.; Kim, D. -P. Continuous recycling of homogeneous Pd/Cu catalysts for cross-coupling reactions. Org. Lett. 2014, 16, 3974.

    27. [27]

      Chen, C.; Zhu, X.; Wen, X.; Zhou, Y.; Zhou, L.; Li, H.; Tao, L.; Li, Q.; Du, S.; Liu, T.; Yan, D.; Xie, C.; Zou, Y.; Wang, Y.; Chen, R.; Huo, J.; Li, Y.; Cheng, J.; Su, H.; Zhao, X.; Cheng, W.; Liu, Q.; Lin, H.; Luo, J.; Chen, J.; Dong, M.; Cheng, K.; Li, C.; Wang, S. Coupling N2 and CO2 in H2O to syn-thesize urea under ambient conditions. Nat. Chem. 2020, 12, 717.

    28. [28]

      Yao, M.; Shi, Z.; Zhang, P.; Ong, W. -J.; Jiang, J.; Ching, W. -Y.; Li, N. Density functional theory study of single metal atoms embedded into MBene for electrocatalytic conversion of N2 to NH3. ACS Appl. Nano Mater. 2020, 3, 9870.

    29. [29]

      Azofra, L. M.; Li, N.; MacFarlane, D. R.; Sun, C. Promising prospects for 2D d2-d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. Energy Environ. Sci. 2016, 9, 2545.

    30. [30]

      Peng, J.; Chen, X.; Ong, W. -J.; Zhao, X.; Li, N. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electroand photocatalysis. Chem 2019, 5, 18.

    31. [31]

      Zhu, X.; Zhou, X.; Jing, Y.; Li, Y. Electrochemical synthesis of urea on MBenes. Nat. Commun. 2021, 12, 4080.

    32. [32]

      Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.

    33. [33]

      Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15.

    34. [34]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.

    35. [35]

      Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533.

    36. [36]

      Governale, M.; Taddei, F.; Fazio, R. Pumping spin with electrical fields. Phys. Rev. B 2003, 68, 155324.

    37. [37]

      Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    38. [38]

      Burns, L. A.; Mayagoitia, Á. V.; Sumpter, B. G.; Sherrill, C. D. Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. J. Chem. Phys. 2011, 134, 084107.

    39. [39]

      Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188.

    40. [40]

      Bagusetty, A.; Choudhury, P.; Saidi, W. A.; Derksen, B.; Gatto, E.; Johnson, J. K. Facile anhydrous proton transport on hydroxyl functionalized graphane. Phys. Rev. Lett. 2017, 118, 186101.

    41. [41]

      Kolluri, K.; Demkowicz, M. J. Dislocation mechanism of interface point defect migration. Phys. Rev. B 2010, 82, 193404.

    42. [42]

      Kamysbayev, V.; Filatov, A. S.; Hu, H.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R. F.; Talapin, D. V. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020, 369, 979.

    43. [43]

      Wu, T.; Pang, X.; Zhao, S.; Xu, S.; Liu, Z.; Li, Y.; Huang, F. One-step construction of ordered sulfur-terminated tantalum carbide MXene for efficient overall water splitting. Small Struct. 2022, 3, 2100206.

    44. [44]

      Shen, M.; Jiang, W.; Liang, K.; Zhao, S.; Tang, R.; Zhang, L.; Wang, J. -Q. One-pot green process to synthesize MXene with controllable surface terminations using molten salts. Angew. Chem. Int. Ed. 2021, 60, 27013.

    45. [45]

      Huang, B.; Li, N.; Ong, W. -J.; Zhou, N. Single atom-supported MXene: how single-atomic-site catalysts tune the high activity and selectivity of electrochemical nitrogen fixation. J. Mater. Chem. A 2019, 7, 27620.

    46. [46]

      Zhou, H.; Chen, Z.; López, A. V.; López, E. D.; Lam, E.; Tsoukalou, A.; Willinger, E.; Kuznetsov, D. A.; Mance, D.; Kierzkowska, A.; Donat, F.; Abdala, P. M.; Comas-Vives, A.; Copéret, C.; Fedorov, A.; Müller, C. R. Engineering the Cu/Mo2CTx (MXene) interface to drive CO2 hydrogenation to methanol. Nat. Catal. 2021, 4, 860.

    47. [47]

      Zhang, M.; Lai, C.; Li, B.; Liu, S.; Huang, D.; Xu, F.; Liu, X.; Qin, L.; Fu, Y.; Li, L.; Yi, H.; Chen, L. MXenes as superexcellent support for confining single atom: properties, synthesis, and electrocatalytic applications. Small 2021, 17, 2007113.

    48. [48]

      Huang, X.; Wang, J.; Gao, J.; Zhang, Z.; Gan, L. -Y.; Xu, H. Structural evolution and underlying mechanism of single-atom centers on Mo2C(100) support during oxygen reduction reaction. ACS Appl. Mater. Interfaces 2021, 13, 17075.

    49. [49]

      Li, Y.; Chen, Y.; Guo, Z.; Tang, C.; Sa, B.; Miao, N.; Zhou, J.; Sun, Z. Breaking the linear scaling relations in MXene catalysts for efficient CO2 reduction. Chem. Eng. J. 2022, 429, 132171.

    50. [50]

      Guo, Z.; Li, Y.; Sa, B.; Fang, Y.; Lin, J.; Huang, Y.; Tang, C.; Zhou, J.; Miao, N.; Sun, Z. M2C-type MXenes: promising catalysts for CO2 capture and reduction. Appl. Surf. Sci. 2020, 521, 146436.

    51. [51]

      Xiao, Y.; Zhang, W. High throughput screening of M3C2 MXenes for efficient CO2 reduction conversion into hydrocarbon fuels. Nanoscale 2020, 12, 7660.

    52. [52]

      Johnson, L. R.; Sridhar, S.; Zhang, L.; Fredrickson, K. D.; Raman, A. S.; Jang, J.; Leach, C.; Padmanabhan, A.; Price, C. C.; Frey, N. C.; Raizada, A.; Rajaraman, V.; Saiprasad, S. A.; Tang, X; Vojvodic, A. MXene materials for the electrochemical nitrogen reduction-functionalized or not? ACS Catal. 2020, 10, 253.

    53. [53]

      Zhou, H.; Chen, Z.; Kountoupi, E.; Tsoukalou, A.; Abdala, P. M.; Florian, P.; Fedorov, A.; Müller, C. R. Two-dimensional molybdenum carbide 2D-Mo2C as a superior catalyst for CO2 hydrogenation. Nat. Commun. 2021, 12, 5510.

    54. [54]

      Kuznetsov, D. A.; Chen, Z.; Abdala, P. M.; Safonova, O. V.; Fedorov, A.; Müller, C. R. Single-atom-substituted Mo2CTx: Fe-layered carbide for selective oxygen reduction to hydrogen peroxide: tracking the evolution of the MXene phase. J. Am. Chem. Soc. 2021, 143, 5771.

    55. [55]

      Kuznetsov, D. A.; Chen, Z.; Kumar, P. V.; Tsoukalou, A.; Kierzkowska, A.; Abdala, P. M.; Safonova, O. V.; Fedorov, A.; Müller, C. R. Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction. J. Am. Chem. Soc. 2019, 141, 17809.

    56. [56]

      Zhang, J.; Zhao, Y.; Guo, X.; Chen, C.; Dong, C. -L.; Liu, R. -S.; Han, C. -P.; Li, Y.; Gogotsi, Y.; Wang, G. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985.

    57. [57]

      Peng, W.; Luo, M.; Xu, X.; Jiang, K.; Peng, M.; Chen, D.; Chan, T. -S.; Tan, Y. Spontaneous atomic ruthenium doping in Mo2CTX-MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Adv. Energy Mater. 2020, 10, 2001364.

    58. [58]

      Wang, S.; Li, L.; Hui, K. S.; Bin, F.; Zhou, W.; Fan, X.; Zalnezhad, E.; Li, J.; Hui, K. N. Computational screening of single atoms anchored on defective Mo2CO2 MXene nanosheet as efficient electrocatalysts for the synthesis of ammonia. Adv. Eng. Mater. 2021, 23, 2100405.

    59. [59]

      Li, N.; Wang, X.; Lu, X.; Zhang, P.; Ong, W. -J. Comprehensive mechanism of CO2 electroreduction on non-noble metal single-atom catalysts of Mo2CS2-MXene. Chem. Eur. J. 2021, 27, 17900.

    60. [60]

      Zhang, J.; Cai, W.; Hu, F. X.; Yang, H.; Liu, B. Recent advances in single atom catalysts for the electrochemical carbon dioxide reduction reaction. Chem. Sci. 2021, 12, 6800.

  • 加载中
    1. [1]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    2. [2]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    3. [3]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    4. [4]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    5. [5]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    6. [6]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    7. [7]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    8. [8]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    9. [9]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    10. [10]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    11. [11]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    12. [12]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    13. [13]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    14. [14]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    15. [15]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    16. [16]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    17. [17]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    18. [18]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    19. [19]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    20. [20]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

Metrics
  • PDF Downloads(50)
  • Abstract views(990)
  • HTML views(102)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return