Citation: Ruiqi Gao, Huan He, Junxian Bai, Lei Hao, Rongchen Shen, Peng Zhang, Youji Li, Xin Li. Pyrene-benzothiadiazole-based Polymer/CdS 2D/2D Organic/Inorganic Hybrid S-scheme Heterojunction for Efficient Photocatalytic H2 Evolution[J]. Chinese Journal of Structural Chemistry, ;2022, 41(6): 220603. doi: 10.14102/j.cnki.0254-5861.2022-0096 shu

Pyrene-benzothiadiazole-based Polymer/CdS 2D/2D Organic/Inorganic Hybrid S-scheme Heterojunction for Efficient Photocatalytic H2 Evolution

Figures(7)

  • Nowadays, conjugated polymers have garnered numerous attention as a new class of organic photocatalysts due to their tunable electronic properties, low cost, excellent stability and sufficient light-absorption performance. In particular, pyrene-benzothiadiazole-based conjugated polymer (PBBP) has been considered to be a new type of conjugated polymers for photocatalytic H2 evolution. However, the poor charge separation seriously limits its practical application in H2 evolution. In this work, a PBBP-based polymer/CdS 2D/2D organic/inorganic S-scheme heterojunction photocatalyst with a strong internal electric field is, for the first time, prepared for efficient photocatalytic hydrogen evolution. The pyrene-benzothiadiazole-based conjugated polymers (PBBP) are synthesized by the Suzuki-Miyaura reactions. Then, the hybrid heterojunction photocatalysts are fabricated by coupling CdS with it through the ultrasonic mixing method. As a result, the highest H2-production rate of 15.83 mmol h-1 g-1 is achieved on 20% PBBP/CdS composite under visible-light irradiation, nearly 2.7 times higher than that of pure CdS. The apparent quantum efficiency (AQE) of 20% PBBP/CdS composite could reach 8.66% at λ = 420 nm. The enhanced activity could be attributed to the construction of S-scheme heterojunction, which accelerates the recombination of carriers with weaker redox ability and maintains the strong reducibility of electrons in CdS. This work provides a protocol for pyrene-benzothiadiazole-based conjugated polymers to prepare S-scheme heterojunction photocatalysts based on organic/inorganic coupling.
  • 加载中
    1. [1]

      Wang, H.; Li, X.; Zhao, X.; Li, C.; Song, X.; Zhang, P.; Huo, P.; Li, X. A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies. Chin. J. Catal. 2022, 43, 178-214.  doi: 10.1016/S1872-2067(21)63910-4

    2. [2]

      Liu, Y.; Niu, H.; Gu, W.; Cai, X.; Mao, B.; Li, D.; Shi, W. In-situ construction of hierarchical CdS/MoS2 microboxes for enhanced visible-light photocatalytic H2 production. Chem. Eng. J. 2018, 339, 117-124.  doi: 10.1016/j.cej.2018.01.124

    3. [3]

      Sun, B.; Qiu, P.; Liang, Z.; Xue, Y.; Zhang, X.; Yang, L.; Cui, H.; Tian, J. The fabrication of 1D/2D CdS nanorod@Ti3C2 MXene composites for good photocatalytic activity of hydrogen generation and ammonia synthesis. Chem. Eng. J. 2021, 406, 127177.  doi: 10.1016/j.cej.2020.127177

    4. [4]

      Sayed, M.; Yu, J.; Liu, G.; Jaroniec, M. Non-noble plasmonic metal-based photocatalysts. Chem. Rev. 2022, DOI:10.1021/acs.chemrev.1c00473.  doi: 10.1021/acs.chemrev.1c00473

    5. [5]

      Gao, D.; Xu, J.; Wang, L.; Zhu, B.; Yu, H.; Yu, J. Optimizing atomic hydrogen desorption of sulfur-rich NiS1+x cocatalyst for boosting photocatalytic H2 evolution. Adv. Mater. 2022, 34, 2108475.  doi: 10.1002/adma.202108475

    6. [6]

      Shen, R.; Hao, L.; Chen, Q.; Zheng, Q.; Zhang, P.; Li, X. P-Doped g-C3N4 nanosheets with highly dispersed Co0.2N1.6Fe0.2P cocatalyst for efficient photocatalytic hydrogen evolution. Acta Phys-Chim. Sin. 2021, 0, 2110014.  doi: 10.3866/PKU.WHXB202110014

    7. [7]

      Xu, C. S.; Lv, P. W. Photo-assisted deposited titanium dioxide film and the enhancement of its photocatalytic water splitting activity. Chin. J. Struct. Chem. 2021, 40, 1223-1230.

    8. [8]

      Jiang, X.; Chen, Y. X.; Lu, C. Z. Bio-inspired materials for photocatalytic hydrogen production. Chin. J. Struct. Chem. 2020, 39, 2123-2130.

    9. [9]

      Fan, Z.; Guo, X.; Jin, Z.; Li, X.; Li, Y. Bridging effect of S-C bond for boosting electron transfer over cubic hollow CoS/g-C3N4 heterojunction toward photocatalytic hydrogen production. Langmuir 2022, 38, 3244-3256.  doi: 10.1021/acs.langmuir.1c03379

    10. [10]

      Yang, M.; Wang, P.; Li, Y.; Tang, S.; Lin, X.; Zhang, H.; Zhu, Z.; Chen, F. Graphene aerogel-based NiAl-LDH/g-C3N4 with ultratight sheet-sheet heterojunction for excellent visible-light photocatalytic activity of CO2 reduction. Appl. Catal. B-Environ. 2022, 306, 121065.  doi: 10.1016/j.apcatb.2022.121065

    11. [11]

      Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72-123.  doi: 10.1016/j.apsusc.2016.07.030

    12. [12]

      Li, Y.; Li, X.; Zhang, H. W.; Fan, J. J.; Xiang, Q. J. Design and application of active sites in g-C3N4-based photocatalysts. J. Mater. Sci. Technol. 2020, 56, 69-88.  doi: 10.1016/j.jmst.2020.03.033

    13. [13]

      Li, Y. F.; Zhou, M. H.; Cheng, B.; Shao, Y. Recent advances in g-C3N4-based heterojunction photocatalysts. J. Mater. Sci. Technol. 2020, 56, 1-17.  doi: 10.1016/j.jmst.2020.04.028

    14. [14]

      Sprick, R. S.; Bonillo, B.; Clowes, R.; Guiglion, P.; Brownbill, N. J.; Slater, B. J.; Blanc, F.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. Visible-light-driven hydrogen evolution using planarized conjugated polymer photocatalysts. Angew. Chem. Int. Ed. 2016, 128, 1824-1828.  doi: 10.1002/ange.201510542

    15. [15]

      Kuecken, S.; Acharjya, A.; Zhi, L.; Schwarze, M.; Schomacker, R.; Thomas, A. Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution. Chem. Commun. 2017, 53, 5854-5857.  doi: 10.1039/C7CC01827D

    16. [16]

      Yang, C.; Ma, B. C.; Zhang, L.; Lin, S.; Ghasimi, S.; Landfester, K.; Zhang, K. A.; Wang, X. Molecular engineering of conjugated polybenzothiadiazoles for enhanced hydrogen production by photosynthesis. Angew. Chem. Int. Ed. 2016, 55, 9202-9206.  doi: 10.1002/anie.201603532

    17. [17]

      Xu, Y.; Mao, N.; Zhang, C.; Wang, X.; Zeng, J.; Chen, Y.; Wang, F.; Jiang, J. -X. Rational design of donor-π-acceptor conjugated microporous polymers for photocatalytic hydrogen production. Appl. Catal. B-Environ. 2018, 228, 1-9.  doi: 10.1016/j.apcatb.2018.01.073

    18. [18]

      Liu, C.; Wang, K.; Gong, X.; Heeger, A. J. Low bandgap semiconducting polymers for polymeric photovoltaics. Chem. Soc. Rev. 2016, 45, 4825-4846.  doi: 10.1039/C5CS00650C

    19. [19]

      Kang, H.; Lee, W.; Oh, J.; Kim, T.; Lee, C.; Kim, B. J. From fullerene-polymer to all-polymer solar cells: the importance of molecular packing, orientation, and morphology control. Accounts Chem. Res. 2016, 49, 2424-2434.  doi: 10.1021/acs.accounts.6b00347

    20. [20]

      Sachs, M.; Sprick, R. S.; Pearce, D.; Hillman, S. A. J.; Monti, A.; Guilbert, A. A. Y.; Brownbill, N. J.; Dimitrov, S.; Shi, X.; Blanc, F.; Zwijnenburg, M. A.; Nelson, J.; Durrant, J. R.; Cooper, A. I. Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution. Nat. Commun. 2018, 9, 4968.  doi: 10.1038/s41467-018-07420-6

    21. [21]

      Cheng, C.; Wang, X.; Lin, Y.; He, L.; Jiang, J. -X.; Xu, Y.; Wang, F. The effect of molecular structure and fluorination on the properties of pyrene-benzothiadiazole-based conjugated polymers for visible-light-driven hydrogen evolution. Polym. Chem-UK. 2018, 9, 4468-4475.  doi: 10.1039/C8PY00722E

    22. [22]

      Figueira-Duarte, T. M.; Mullen, K. Pyrene-based materials for organic electronics. Chem. Rev. 2011, 111, 7260-7314.  doi: 10.1021/cr100428a

    23. [23]

      Pandey, M. D.; Mishra, A. K.; Chandrasekhar, V.; Verma, S. Silver-guided excimer emission in an adenine-pyrene conjugate: fluorescence lifetime and crystal studies. Inorg. Chem. 2010, 49, 2020-2022.  doi: 10.1021/ic9022008

    24. [24]

      Sprick, R. S.; Jiang, J. X.; Bonillo, B.; Ren, S.; Ratvijitvech, T.; Guiglion, P.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J. Am. Chem. Soc. 2015, 137, 3265-3270.  doi: 10.1021/ja511552k

    25. [25]

      Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. An inorganic/ organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism. Adv. Mater. 2021, 33, 2100317.  doi: 10.1002/adma.202100317

    26. [26]

      Hu, Y.; Hao, X.; Cui, Z.; Zhou, J.; Chu, S.; Wang, Y.; Zou, Z. Enhanced photocarrier separation in conjugated polymer engineered CdS for direct Z-scheme photocatalytic hydrogen evolution. Appl. Catal. B-Environ. 2020, 260, 118131.  doi: 10.1016/j.apcatb.2019.118131

    27. [27]

      Shen, R.; Ren, D.; Ding, Y.; Guan, Y.; Ng, Y. H.; Zhang, P.; Li, X. Nanostructured CdS for efficient photocatalytic H2 evolution: a review. Sci. China Mater. 2020, 63, 2153-2188.  doi: 10.1007/s40843-020-1456-x

    28. [28]

      Bai, J.; Shen, R.; Jiang, Z.; Zhang, P.; Li, Y.; Li, X. Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based Ohmic junctions for effective photocatalytic H2 generation. Chin. J. Catal. 2022, 43, 359-369.  doi: 10.1016/S1872-2067(21)63883-4

    29. [29]

      Han, G.; Xu, F.; Cheng, B.; Li, Y.; Yu, J.; Zhang, L. Enhanced photocatalytic H2O2 production over inverse opal ZnO@ polydopamine s-scheme heterojunctions. Acta Phys-Chim. Sin. 2022, 38, 2112037.

    30. [30]

      Ma, X. W.; Lin, H. F.; Li, Y. Y.; Wang, L.; Pu, X. P.; Yi, X. J. Dramatically enhanced visible-light-responsive H2 evolution of Cd1-xZnxS via the synergistic effect of Ni2P and 1T/2H MoS2 cocatalysts. Chin. J. Struct. Chem. 2021, 40, 7-22.

    31. [31]

      Wang, D.; Zeng, H.; Xiong, X.; Wu, M. -F.; Xia, M.; Xie, M.; Zou, J. -P.; Luo, S. -L. Highly efficient charge transfer in CdS-covalent organic framework nanocomposites for stable photocatalytic hydrogen evolution under visible light. Sci. Bull. 2020, 65, 113-122.  doi: 10.1016/j.scib.2019.10.015

    32. [32]

      Wang, D.; Li, X.; Zheng, L. L.; Qin, L. M.; Li, S.; Ye, P.; Li, Y.; Zou, J. P. Size-controlled synthesis of CdS nanoparticles confined on covalent triazine-based frameworks for durable photocatalytic hydrogen evolution under visible light. Nanoscale 2018, 10, 19509-19516.  doi: 10.1039/C8NR06691D

    33. [33]

      Tang, S.; Xia, Y.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. Enhanced photocatalytic H2 production performance of CdS hollow spheres using C and Pt as bi-cocatalysts. Chin. J. Catal. 2021, 42, 743-752.  doi: 10.1016/S1872-2067(20)63695-6

    34. [34]

      Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Construction of 1D/2D W18O49/porous g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2 evolution. Acta Phys-Chim. Sin. 2022, 38, 2108028.

    35. [35]

      Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Emerging S-scheme photocatalyst. Adv. Mater. 2022, 34, 2107668.  doi: 10.1002/adma.202107668

    36. [36]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543-1559.  doi: 10.1016/j.chempr.2020.06.010

    37. [37]

      Wageh, S.; Al-Ghamdi, A. A.; Jafer, R.; Li, X.; Zhangc, P. A new heterojunction in photocatalysis: S-scheme heterojunction. Chin. J. Catal. 2021, 42, 667-669.  doi: 10.1016/S1872-2067(20)63705-6

    38. [38]

      Li, S.; Cai, M.; Liu, Y.; Zhang, J.; Wang, C.; Zang, S.; Zhang, P.; Li, X.; Li, Y. In-situ constructing C3N5 nanosheets/Bi2WO6 nanodots S-scheme heterojunction with enhanced structural defects for efficiently photocatalytic removal of tetracycline and Cr(Ⅵ). Inorg. Chem. Front. 2022, doi: 10.1039/D2QI00317A.  doi: 10.1039/D2QI00317A

    39. [39]

      Bai, J.; Chen, W.; Shen, R.; Jiang, Z.; Zhang, P.; Liu, W.; Li, X. Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution. J. Mater. Sci. Technol. 2022, 112, 85-95.  doi: 10.1016/j.jmst.2021.11.003

    40. [40]

      Dai, M.; He, Z.; Zhang, P.; Li, X.; Wang, S. ZnWO4-ZnIn2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution. J. Mater. Sci. Technol. 2022, 122, 231-242.  doi: 10.1016/j.jmst.2022.02.014

    41. [41]

      Jiang, J.; Xiong, Z.; Wang, H.; Liao, G.; Bai, S.; Zou, J.; Wu, P.; Zhang, P.; Li, X. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J. Mater. Sci. Technol. 2022, 118, 15-24.  doi: 10.1016/j.jmst.2021.12.018

    42. [42]

      Xu, Q.; Wageh, S.; Al-Ghamdi, A. A.; Li, X. Design principle of S-scheme heterojunction photocatalyst. J. Mater. Sci. Technol. 2022, 124, 171-173.  doi: 10.1016/j.jmst.2022.02.016

    43. [43]

      Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 2020, 11, 4613.  doi: 10.1038/s41467-020-18350-7

    44. [44]

      Deka, K.; Kalita, M. P. C. Evidence of reaction rate influencing cubic and hexagonal phase formation process in CdS nanocrystals. Chem. Phys. Lett. 2016, 652, 11-15.  doi: 10.1016/j.cplett.2016.04.023

    45. [45]

      Ai, L.; Su, J.; Wang, M.; Jiang, J. Bamboo-structured nitrogen-doped carbon nanotube coencapsulating cobalt and molybdenum carbide nanoparticles: an efficient bifunctional electrocatalyst for overall water splitting. ACS Sustain. Chem. Eng. 2018, 6, 9912-9920.  doi: 10.1021/acssuschemeng.8b01120

    46. [46]

      Ren, D.; Shen, R.; Jiang, Z.; Lu, X.; Li, X. Highly efficient visible-light photocatalytic H2 evolution over 2D-2D CdS/Cu7S4 layered heterojunctions. Chin. J. Catal. 2020, 41, 31-40.  doi: 10.1016/S1872-2067(19)63467-4

    47. [47]

      Zhou, J.; Lei, Y.; Ma, C.; Lv, W.; Li, N.; Wang, Y.; Xu, H.; Zou, Z. A (001) dominated conjugated polymer with high-performance of hydrogen evolution under solar light irradiation. Chem. Commun. 2017, 53, 10536-10539.  doi: 10.1039/C7CC06105F

    48. [48]

      Jin, Z.; Zhang, L.; Wang, G.; Li, Y.; Wang, Y. Graphdiyne formed a novel CuI-GD/g-C3N4 S-scheme heterojunction composite for efficient photocatalytic hydrogen evolution. Sustain. Energy Fuels 2020, 4, 5088-5101.  doi: 10.1039/D0SE01011A

    49. [49]

      Shen, R.; Ding, Y.; Li, S.; Zhang, P.; Xiang, Q.; Ng, Y. H.; Li, X. Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 25-36.  doi: 10.1016/S1872-2067(20)63600-2

    50. [50]

      Zhang, X. -H.; Wang, X. -P.; Xiao, J.; Wang, S. -Y.; Huang, D. -K.; Ding, X.; Xiang, Y. -G.; Chen, H. Synthesis of 1, 4-diethynylbenzene-based conjugated polymer photocatalysts and their enhanced visible/near-infrared-light-driven hydrogen production activity. J. Catal. 2017, 350, 64-71.  doi: 10.1016/j.jcat.2017.02.026

    51. [51]

      Sprick, R. S.; Bonillo, B.; Sachs, M.; Clowes, R.; Durrant, J. R.; Adams, D. J.; Cooper, A. I. Extended conjugated microporous polymers for photocatalytic hydrogen evolution from water. Chem. Commun. 2016, 52, 10008-10011.  doi: 10.1039/C6CC03536A

    52. [52]

      Sun, L.; Li, L.; Yang, J.; Fan, J.; Xu, Q. Fabricating covalent organic framework/CdS S-scheme heterojunctions for improved solar hydrogen generation. Chin. J. Catal. 2022, 43, 350-358.  doi: 10.1016/S1872-2067(21)63869-X

    53. [53]

      He, K.; Xie, J.; Liu, Z. -Q.; Li, N.; Chen, X.; Hu, J.; Li, X. Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light. J. Mater. Chem. A 2018, 6, 13110-13122.  doi: 10.1039/C8TA03048K

    54. [54]

      Wen, J.; Xie, J.; Zhang, H.; Zhang, A.; Liu, Y.; Chen, X.; Li, X. Constructing multifunctional metallic Ni interface layers in the g-C3N4 nanosheets/amorphous NiS heterojunctions for efficient photocatalytic H2 generation. ACS Appl. Mater. Inter. 2017, 9, 14031-14042.  doi: 10.1021/acsami.7b02701

    55. [55]

      Hu, T.; Li, P.; Zhang, J.; Liang, C.; Dai, K. Highly efficient direct Z-scheme WO3/CdS-diethylenetriamine photocatalyst and its enhanced photocatalytic H2 evolution under visible light irradiation. Appl. Surf. Sci. 2018, 442, 20-29.  doi: 10.1016/j.apsusc.2018.02.146

    56. [56]

      Wageh, S.; Al-Ghamdi, A. A.; Al-Hartomy, O. A.; Alotaibi, M. F.; Wang, L. CdS/polymer S-scheme H2-production photocatalyst and its in-situ irradiated electron transfer mechanism. Chin. J. Catal. 2022, 43, 586-588.  doi: 10.1016/S1872-2067(21)63925-6

    57. [57]

      Bai, J.; Shen, R.; Chen, W.; Xie, J.; Zhang, P.; Jiang, Z.; Li, X. Enhanced photocatalytic H2 evolution based on a Ti3C2/Zn0.7Cd0.3S/Fe2O3 Ohmic/S-scheme hybrid heterojunction with cascade 2D coupling interfaces. Chem. Eng. J. 2022, 429, 132587.  doi: 10.1016/j.cej.2021.132587

    58. [58]

      Shen, R.; He, K.; Zhang, A.; Li, N.; Ng, Y. H.; Zhang, P.; Hu, J.; Li, X. In-situ construction of metallic Ni3C@Ni core-shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production. Appl. Catal. B-Environ. 2021, 291, 120104.  doi: 10.1016/j.apcatb.2021.120104

    59. [59]

      Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem. Int. Ed. 2020, 59, 5218-5225.  doi: 10.1002/anie.201916012

    60. [60]

      Luo, J.; Lin, Z.; Zhao, Y.; Jiang, S.; Song, S. The embedded CuInS2 into hollow-concave carbon nitride for photocatalytic H2O splitting into H2 with S-scheme principle. Chin. J. Catal. 2020, 41, 122-130.  doi: 10.1016/S1872-2067(19)63490-X

    61. [61]

      Shen, R.; Lu, X.; Zheng, Q.; Chen, Q.; Ng, Y. H.; Zhang, P.; Li, X. Tracking S-scheme charge transfer pathways in Mo2C/CdS H2-evolution photocatalysts. Solar RRL 2021, 5, 2100177.  doi: 10.1002/solr.202100177

    62. [62]

      Shi, R.; Cao, Y.; Bao, Y.; Zhao, Y.; Waterhouse, G. I. N.; Fang, Z.; Wu, L. Z.; Tung, C. H.; Yin, Y.; Zhang, T. Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution. Adv. Mater. 2017, 29, 1700803.  doi: 10.1002/adma.201700803

    63. [63]

      Ren, D.; Liang, Z.; Ng, Y. H.; Zhang, P.; Xiang, Q.; Li, X. Strongly coupled 2D-2D nanojunctions between P-doped Ni2S (Ni2SP) cocatalysts and CdS nanosheets for efficient photocatalytic H2 evolution. Chem. Eng. J. 2020, 390, 124496.  doi: 10.1016/j.cej.2020.124496

    64. [64]

      Jiang, Z.; Chen, Q.; Zheng, Q.; Shen, R.; Zhang, P.; Li, X. Constructing 1D/2D schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution. Acta Phys-Chim. Sin. 2021, 37, 2010059.

    65. [65]

      Zhao, Z.; Shen, B.; Hu, Z.; Zhang, J.; He, C.; Yao, Y.; Guo, S. Q.; Dong, F. Recycling of spent alkaline Zn-Mn batteries directly: combination with TiO2 to construct a novel Z-scheme photocatalytic system. J. Hazard. Mater. 2020, 400, 123236.  doi: 10.1016/j.jhazmat.2020.123236

    66. [66]

      Li, X. B.; Liu, J. Y.; Huang, J. T.; He, C. Z.; Feng, Z. J.; Chen, Z.; Wan, L. Y.; Deng, F. All organic S-scheme heterojunction PDI-Ala/S-C3N4 photocatalyst with enhanced photocatalytic performance. Acta Phys-Chim. Sin. 2021, 37, 2010030.

    67. [67]

      Li, X.; Luo, Q.; Han, L.; Deng, F.; Yang, Y.; Dong, F. Enhanced photocatalytic degradation and H2 evolution performance of NCDs/S-C3N4 S-scheme heterojunction constructed by π-π conjugate self-assembly. J. Mater. Sci. Technol. 2022, 114, 222-232.  doi: 10.1016/j.jmst.2021.10.030

    68. [68]

      Li, X. B.; Kang, B. B.; Dong, F.; Zhang, Z. Q.; Luo, X. D.; Han, L.; Huang, J. T.; Feng, Z. J.; Chen, Z.; Xu, J. L.; Peng, B. L.; Wang, Z. L. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies. Nano Energy 2021, 81, 105671.  doi: 10.1016/j.nanoen.2020.105671

    69. [69]

      Li, S.; Wang, C.; Cai, M.; Yang, F.; Liu, Y.; Chen, J.; Zhang, P.; Li, X.; Chen, X. Facile fabrication of TaON/Bi2MoO6 core-shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr(Ⅵ) reduction. Chem. Eng. J. 2022, 428, 131158.  doi: 10.1016/j.cej.2021.131158

  • 加载中
    1. [1]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    2. [2]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    3. [3]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    4. [4]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    5. [5]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    6. [6]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    9. [9]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    10. [10]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    11. [11]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    12. [12]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    13. [13]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    14. [14]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    17. [17]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    20. [20]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

Metrics
  • PDF Downloads(49)
  • Abstract views(1036)
  • HTML views(106)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return