Citation: Guobing Mao, Heng Wu, Tianyang Qiu, Dingjie Bao, Longjie Lai, Wenguang Tu, Qi Liu. WO3@Fe2O3 Core-Shell Heterojunction Photoanodes for Efficient Photoelectrochemical Water Splitting[J]. Chinese Journal of Structural Chemistry, ;2022, 41(8): 220802. doi: 10.14102/j.cnki.0254-5861.2022-0086 shu

WO3@Fe2O3 Core-Shell Heterojunction Photoanodes for Efficient Photoelectrochemical Water Splitting

Figures(7)

  • Photoelectrochemical (PEC) hydrogen production from water splitting is a green technology to convert solar energy into renewable hydrogen fuel. The construction of host/guest architecture in semiconductor photoanodes has been proven to be an effective strategy to improve solar-to-fuel conversion efficiency. In this study, WO3@Fe2O3 core-shell nanoarray heterojunction photoanodes are synthesized from the in-situ decomposition of WO3@Prussian blue (WO3@PB) and then used as host/guest photoanodes for photoelectrochemical water splitting, during which Fe2O3 serves as guest material to absorb visible solar light and WO3 can act as host scaffolds to collect electrons at the contact. The prepared WO3@Fe2O3 shows the enhanced photocurrent density of 1.26 mA cm-2 (under visible light) at 1.23 V. vs RHE and a superior IPEC of 24.4% at 350 nm, which is higher than that of WO3@PB and pure WO3 (0.43 mA/cm-2 and 16.3%, 0.18 mA/cm-2 and 11.5%) respectively, owing to the efficient light-harvesting from Fe2O3 and the enhanced electron-hole pairs separation from the formation of type-II heterojunctions, and the direct and ordered charge transport channels from the one-dimensional (1D) WO3 nanoarray nanostructures. Therefore, this work provides an alternative insight into the construction of sustainable and cost-effective photoanodes to enhance the efficiency of the solar-driven water splitting.
  • 加载中
    1. [1]

      Fu, J.; Fan, Z.; Nakabayashi, M.; Ju, H.; Pastukhova, N.; Xiao, Y.; Feng, C.; Shibata, N.; Domen, K.; Li, Y. Interface engineering of Ta3N5 thin film photoanode for highly efficient photoelectrochemical water splitting. Nat. Commun. 2022, 13, 729-735.  doi: 10.1038/s41467-022-28415-4

    2. [2]

      Seabold, J.; Choi, K. Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem. Mater. 2011, 23, 1105-1112.

    3. [3]

      Liu, Y.; Yu, F.; Wang, F.; Bai, S.; He, G. Construction of Z-scheme In2S3-TiO2 for CO2 reduction under concentrated natural sunlight. Chin. J. Struct. Chem. 2022, 41, 2201034-2201039.

    4. [4]

      Li, C.; Li, T.; Jing, M.; Yuan, W.; Li, C. M. Remarkably promoted photoelectrochemical water oxidation on TiO2 nanowire arrays via poly-mermediated self-assembly of CoOx nanoparticles. Sol. Energ. Mat. Sol. C 2020, 207, 110349.

    5. [5]

      Zou, J.; Liao, G.; Jiang, J.; Xiong, Z.; Bai, S. In-situ construction of sulfur-doped g-C3N4 defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin. J. Struct. Chem. 2022, 41, 2201025-2201033.

    6. [6]

      Yuan, W.; Yuan, J.; Xie, J.; Li, C. M. Polymer-mediated self-assembly of TiO2@Cu2O core-shell nanowire array for highly effcient photoelectrochemical water oxidation. ACS Appl. Mater. Inter 2016, 8, 6082-6092.  doi: 10.1021/acsami.6b00030

    7. [7]

      Zhu, P.; Wang, Y.; Sun, X.; Zhang, J.; Waclawik, E. R.; Zheng, Z. Photocatalytic-controlled olefin isomerization over WO3-x using low-energy photons up to 625 nm. Chin. J. Catal. 2021, 42, 1641-1647.  doi: 10.1016/S1872-2067(21)63815-9

    8. [8]

      Ran, L.; Qiu, S.; Zhai, P.; Li, Z.; Gao, J.; Zhang, X.; Zhang, B.; Wang, C.; Sun, L.; Hou, J. Conformal macroporous inverse opal oxynitride-based photoanode for robust photoelectrochemical water splitting. J. Am. Chem. Soc. 2021, 143, 7402-7413.  doi: 10.1021/jacs.1c00946

    9. [9]

      He, J. S.; Liu, P. Y.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. P. Single-atom catalysts for high-efficiency photocatalytic and photoelectro-chemical water splitting: distinctive roles, unique fabrication methods and specific design strategies. J. Mater. Chem. A 2022, 10, 6835-6871.  doi: 10.1039/D2TA00835A

    10. [10]

      Gaikwad, M. A.; Suryawanshi, U. P.; Ghorpade, U. V.; Jang, J. S.; Suryawanshi, M. P.; Kim, J. H. Emerging surface, bulk, and interface engineering strategies on BiVO4 for photoelectrochemical water splitting. Small 2022, 18, 2105084.  doi: 10.1002/smll.202105084

    11. [11]

      Li, C.; Chen Z.; Yuan, W.; Xu, Q. H.; Li, C. M. In situ growth of α-Fe2O3@Co3O4 core-shell wormlike nanoarrays for a highly efficient photoelectrochemical water oxidation reaction. Nanoscale 2019, 11, 1111-1122.

    12. [12]

      Pinto, F.; Wilson, A.; Moss, B.; Kafizas, A. Systematic exploration of WO3/TiO2 heterojunction phase space for applications in photoelectro-chemical water splitting. J. Phys. Chem. C 2022, 126, 871-884.

    13. [13]

      Wang, Y.; Wang, Y.; Zhao, J.; Chen, M.; Huang, X.; Xu, Y. Efficient production of H2O2 on Au/WO3 under visible light and the influencing factors. Appl. Catal. B 2021, 284, 119691-119702.

    14. [14]

      Liu, X.; Wanga, F.; Wanga, Q. Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 2012, 14, 7894-7911.

    15. [15]

      Wang, Z.; Zhu, H.; Tu, W.; Zhu, X.; Yao, Y.; Zhou, Y.; Zou, Z. Host/guest nanostructured photoanodes integrated with targeted enhancement strategies for photoelectrochemical water splitting. Adv. Sci. 2022, 9, 103744.

    16. [16]

      Francisco, F.; Dias, P.; Ivanou, D.; Santos, F.; Azeyedo, J.; Mendes, A. Synthesis of host-guest hematite photoelectrodes for solar water splitting. Chemnanomat 2019, 5, 911-920.

    17. [17]

      Yu, W.; Chen, J.; Shang, T.; Chen, L.; Gu, L.; Peng, T. Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H-2 production. Appl. Catal. B Environ. 2017, 219, 693-704.

    18. [18]

      Li, H.; Zhao, F.; Zhang, J.; Luo, L.; Xiao, X.; Huang, Y.; Ji, H.; Tong, Y. A g-C3N4/WO3 photoanode with exceptional ability for photoelectrochemical water splitting. Mate. Chem. Front. 2017, 1, 338-342.

    19. [19]

      Pinto, F.; Wilson, A.; Moss, B.; Kafizas, A. Systematic exploration of WO3/TiO2 heterojunction phase space for applications in photoelectrochemical water splitting. J. Phys. Chem. C 2022, 126, 871-884.

    20. [20]

      Wei, P.; Lin, K.; Meng, D.; Xie, T.; Na, Y. Photoelectrochemical performance for water oxidation improved by molecular nickel porphyrinintegrated WO3/TiO2 photoanode. Chemsuschem 2018, 11, 1746-1750.

    21. [21]

      Sun, W.; Wang, D.; Rahman, Z. U.; Wei, N.; Chen, S. 3D hierarchical WO3 grown on TiO2 nanotube arrays and their photoelectrochemical performance for water splitting. J. Alloys Compd. 2017, 695, 2154-2159.

    22. [22]

      Khare, C.; Sliozberg, K.; Meyer, R.; Savan, A.; Schuhmann, W.; Ludwig, A. Layered WO3/TiO2 nanostructures with enhanced photocurrent densities. Int. J. Hydrogen Energy 2013, 38, 15954-15964.

    23. [23]

      Zhang, Y. F.; Zhu, Y. K.; Lv, C. X.; Lai, S. J.; Xu, W. J.; Sun, J.; Sun, Y. Y.; Yang, D. J. Enhanced visible-light photoelectrochemical performance via chemical vapor deposition of Fe2O3 on a WO3 film to form a heterojunction. Rare Metals 2020, 39, 841-849.

    24. [24]

      Kim, E.; Kim, S.; Choi, Y. M.; Park, J. H.; Shin, H. Ultrathin hematite on mesoporous WO3 from atomic layer deposition for minimal charge recombination. ACS Sustain. Chem. Eng. 2020, 8, 11358-11367.

    25. [25]

      Memar, A.; Phan, C. M.; Tade, M. O. Photocatalytic activity of WO3/Fe2O3 nanocomposite photoanode. Int. J. Hydrogen Energy 2015, 40, 8642-8649.

    26. [26]

      Sadhasivam, S.; Gunasekaran, A.; Anbarasan, N.; Mukilan, N.; Jeganathan, K. CdS and CdSe nanoparticles activated 1D TiO2 hetero-structure nanoarray photoelectrodes for enhanced photoelectrocatalytic water splitting. Int. J. Hydrogen Energy 2021, 46, 26381-26390.

    27. [27]

      Qiu, Y.; Pan, Z.; Chen, H.; Ye, D.; Guo, L.; Fan, Z.; Yang, S. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Sci. Bull. 2019, 64, 1348-1380.

    28. [28]

      Pu, Y.; Wang, G.; Chang, K.; Ling, Y.; Li, Y. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 2013, 13, 3817-3823.

    29. [29]

      Luo, Z.; Wang, T.; Zhang, J.; Li, C.; Li, H.; Gong, J. Dendritic hematite nanoarray photoanode modified with a conformal titanium dioxide inter-layer for effective charge collection. Angew. Chem. Int. Ed. 2017, 56, 12878-12882.

    30. [30]

      Peng, G.; Lu, H.; Liu, Y.; Fan, D. The construction of a single-crystalline SbSI nanorod array-WO3 heterostructure photoanode for high PEC performance. Chem. Commun. 2021, 57, 335-338.

    31. [31]

      Gimenes, D. T.; Nossol, E. Effect of light source and applied potential in the electrochemical synthesis of Prussian blue on carbon nanotubes. Electrochim. Acta 2017, 251, 513-521.

    32. [32]

      Mao, G.; Li, C.; Li, Z.; Xu, M.; Wu, H.; Liu, Q. Efficient charge migration in TiO2@PB nanorod arrays with core-shell structure for photoelectrochemical water splitting. CrystEngComm 2022, 24, 2567-2574.

    33. [33]

      Wu, H.; Liu, Q.; Zhang, L.; Tang, Y.; Wang, G.; Mao, G. Novel nano-structured WO3@Prussian blue heterojunction photoanodes for efficient photoelectrochemical water splitting. ACS Appl. Energy Mater. 2021, 4, 12508-12514.

    34. [34]

      Cao, L.; Liu, Y.; Zhang, B.; Lu, L. In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide: facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. ACS Appl. Mater. Inter. 2010, 2, 2339-2346.

    35. [35]

      Li, Y.; Hu, J.; Yang, K.; Cao, B.; Li, Z.; Yang, L.; Pan, F. Synthetic control of Prussian blue derived nano-materials for energy storage and conversion application. Mater. Today Energy 2019, 14, 100332.

    36. [36]

      Hu, M.; Belik, A. A.; Imura, M.; Mibu, K.; Tsujimoto, Y.; Yamauchi, Y. Synthesis of superparamagnetic nanoporous iron oxide particles with hollow interiors by using Prussian blue coordination polymers. Chem. Mater. 2012, 24, 2698-2707.

    37. [37]

      Zakaria, M. B.; Belik, A. A.; Liu, C. H.; Hsieh, H. Y.; Liao, Y. T.; Malgras, V.; Yamauchi, Y.; Wu, K. C. W. Prussian blue derived nano-porous iron oxides as anticancer drug carriers for magnetic-guided chemotherapy. Chem. Asian J. 2015, 10, 1457-1462.

    38. [38]

      Wang, Y.; Wang, Y.; Zhao, J.; Chen, M.; Huang, X.; Xu, Y. Efficient production of H2O2 on Au/WO3 under visible light and the influencing factors. Appl. Catal. B 2021, 284, 119691-119702.

    39. [39]

      Ma, M.; Zhang, K.; Li, P.; Jung, M. S.; Jeong, M. J.; Park, J. H. Dual oxygen and tungsten vacancies on a WO3 photoanode for enhanced water oxidation. Angew. Chem. Int. Ed. 2016, 128, 11998-12002.

    40. [40]

      Ma, J.; Mao, K.; Low, J.; Wang, Z.; Xi, D.; Zhang, W.; Ju, H.; Qi, Z.; Long, R.; Wu, X.; Song, L.; Xiong, Y. Efficient photoelectrochemical conversion of methane into ethylene glycol by WO3 nanobar arrays. Angew. Chem. Int. Ed. 2021, 133, 9443-9447.

    41. [41]

      Iandolo, B.; Wickman, B.; Zoric, I.; Hellman, A. The rise of hematite: origin and strategies to reduce the high onset potential for the oxygen evolution reaction. J. Mater. Chem. A 2015, 3, 16896-16912.

    42. [42]

      Chai, H.; Gao, L.; Wang, P.; Li, F.; Hu, G.; Jin, J. In2S3/F-Fe2O3 type-II heterojunction bonded by interfacial S-O for enhanced charge separation and transport in photoelectrochemical water oxidation. Appl. Catal. B Environ. 2022, DOI 10.1016/j.apcatb.2021.121011.

    43. [43]

      Zhang, M.; Luo, W.; Li, Z.; Yu, T.; Zou, Z. Improved photoelectro-chemical responses of Si and Ti codoped α-Fe2O3 photoanode films. Appl. Phys. Lett. 2010, 97, 042105-042105.

    44. [44]

      Mei, B. A.; Munteshari, O.; Lau, J.; Dunn, B.; Pilon, L. Physical interpretations of nyquist plots for EDLC electrodes and devices. J. Phys. Chem. C 2018, 122, 194-206.

    45. [45]

      Sivula, K.; Formal F. L.; Gratzel, M. WO3-Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chem. Mater. 2009, 21, 2862-2867.

    46. [46]

      Wu, Q.; Bu, Q.; Li, S.; Lin, Y.; Zou, X.; Wang, D.; Xi, T. Enhanced interface charge transfer via n-n WO3/Ti-Fe2O3 heterojunction formation for water splitting. J. Alloys Compd. 2019, 803, 1105-1111.

  • 加载中
    1. [1]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    2. [2]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    3. [3]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    4. [4]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    5. [5]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    6. [6]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    7. [7]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    8. [8]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    9. [9]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    10. [10]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    11. [11]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    12. [12]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    13. [13]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    14. [14]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    15. [15]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    16. [16]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2023.100335

    17. [17]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    20. [20]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

Metrics
  • PDF Downloads(3)
  • Abstract views(202)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return