In-Situ Synchrotron Radiation Infrared Spectroscopic Identification of Reactive Intermediates over Multiphase Electrocatalytic Interfaces
- Corresponding author: Hui Su, suhui@ustc.edu.cn Qinghua Liu, qhliu@ustc.edu.cn
Citation: Wanlin Zhou, Jingjing Jiang, Weiren Cheng, Hui Su, Qinghua Liu. In-Situ Synchrotron Radiation Infrared Spectroscopic Identification of Reactive Intermediates over Multiphase Electrocatalytic Interfaces[J]. Chinese Journal of Structural Chemistry, ;2022, 41(10): 221000. doi: 10.14102/j.cnki.0254-5861.2022-0083
Chu, S.; Majumdar, A. J. N. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.
doi: 10.1038/nature11475
Sepulveda, N. A.; Jenkins, J. D.; Edington, A.; Mallapragada, D. S.; Lester, R. K. The design space for long-duration energy storage in decarbonized power systems. Nat. Energy 2021, 6, 506-516.
doi: 10.1038/s41560-021-00796-8
Feng, Y.; Tao, L.; Zheng, Z.; Huang, H.; Lin, F. Upgrading agricultural biomass for sustainable energy storage: bioprocessing, electrochemistry, mechanism. Energy Storage Mater. 2020, 31, 274-309.
doi: 10.1016/j.ensm.2020.06.017
Kang, S.; Miao, R.; Guo, J.; Fu, J. Sustainable production of fuels and chemicals from biomass over niobium based catalysts: a review. Catal. Today 2021, 374, 61-76.
doi: 10.1016/j.cattod.2020.10.029
Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43-51.
doi: 10.1038/nature11115
Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2017, 16, 57-69.
doi: 10.1038/nmat4738
Bu, L.; Zhang, N.; Guo, S.; Zhang, X.; Li, J.; Yao, J.; Wu, T.; Lu, G.; Ma, J. -Y.; Su, D. J. S. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410-1414.
doi: 10.1126/science.aah6133
Zhou, W.; Su, H.; Wang, Z.; Yu, F.; Wang, W.; Chen, X.; Liu, Q. Self-synergistic cobalt catalysts with symbiotic metal single-atoms and nanoparticles for efficient oxygen reduction. J. Mater. Chem. A 2021, 9, 1127-1133.
doi: 10.1039/D0TA10267A
Zhao, D.; Zhuang, Z.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215-2264.
doi: 10.1039/C9CS00869A
Yang, H.; Han, X.; Douka, A. I.; Huang, L.; Gong, L.; Xia, C.; Park, H. S.; Xia, B. Y. Advanced oxygen electrocatalysis in energy conversion and storage. Adv. Funct. Mater. 2021, 31, 2007602-2007630.
doi: 10.1002/adfm.202007602
Noguchi, H.; Okada, T.; Uosaki, K. Molecular structure at electrode/electrolyte solution interfaces related to electrocatalysis. Faraday Discuss. 2009, 140, 125-137.
doi: 10.1039/B803640C
Zhou, W.; Su, H.; Li, Y.; Liu, M.; Zhang, H.; Zhang, X.; Sun, X.; Xu, Y.; Liu, Q.; Wei, S. Identification of the evolving dynamics of coordination-unsaturated iron atomic active sites under reaction conditions. ACS Energy Lett. 2021, 6, 3359-3366.
doi: 10.1021/acsenergylett.1c01316
Yang, Y.; Luo, M.; Zhang, W.; Sun, Y.; Chen, X.; Guo, S. J. Metal surface and interface energy electrocatalysis: fundamentals, performance engineering, and opportunities. Chem 2018, 4, 2054-2083.
doi: 10.1016/j.chempr.2018.05.019
Cai, W.; Chen, R.; Yang, H.; Tao, H. B.; Wang, H. -Y.; Gao, J.; Liu, W.; Liu, S.; Hung, S. -F.; Liu, B. Amorphous versus crystalline in water oxidation catalysis: a case study of NiFe alloy. Nano Lett. 2020, 20, 4278-4285.
doi: 10.1021/acs.nanolett.0c00840
Heidary, N.; Ly, K. H.; Kornienko, N. J. N. L. Probing CO2 conversion chemistry on nanostructured surfaces with operando vibrational spectro-scopy. Nano Lett. 2019, 19, 4817-4826.
doi: 10.1021/acs.nanolett.9b01582
Ting, L. R. L.; Yeo, B. S Recent advances in understanding mechanisms for the electrochemical reduction of carbon dioxide. Curr. Opin. Electrochem. 2018, 8, 126-134.
doi: 10.1016/j.coelec.2018.04.011
Deng, Y. F.; Dong, S. Y.; Li, Z. F.; Jiang, H.; Zhang, X. G.; Ji, X. L. Applications of conventional vibrational spectroscopic methods for batteries beyond Li-ion. Small Methods 2018, 2, 1700332-1700358.
doi: 10.1002/smtd.201700332
Zaera, F. Infrared and molecular beam studies of chemical reactions on solid surfaces. Int. Rev. Phys. Chem. 2002, 21, 433-471.
doi: 10.1080/01442350210156033
Li, Y.; Cheng, W.; Su, H.; Zhao, X.; He, J.; Liu, Q. Operando infrared spectroscopic insights into the dynamic evolution of liquid-solid (photo)electrochemical interfaces. Nano Energy 2020, 77, 105121-105133.
doi: 10.1016/j.nanoen.2020.105121
Zaera, F. New advances in the use of infrared absorption spectro-scopy for the characterization of heterogeneous catalytic reactions. Chem. Soc. Rev. 2014, 43, 7624-7663.
doi: 10.1039/C3CS60374A
Wang, H.; Zhou, Y. -W.; Cai, W. -B. Recent applications of in situ ATR-IR spectroscopy in interfacial electrochemistry. Curr. Opin. Electrochem. 2017, 1, 73-79.
doi: 10.1016/j.coelec.2017.01.008
Andanson, J. -M.; Baiker, A. Exploring catalytic solid/liquid interfaces by in situ attenuated total reflection infrared spectroscopy. Chem. Soc. Rev. 2010, 39, 4571-4584.
doi: 10.1039/b919544k
Hutter, E.; Assiongbon, K.; Fendler, J.; Roy, D. Fourier transform infrared spectroscopy using polarization modulation and polarization selective techniques for internal and external reflection geometries: investigation of self-assembled octadecylmercaptan on a thin gold film. J. Phys. Chem. B 2003, 107, 7812-7819.
doi: 10.1021/jp034910p
Petit, T.; Puskar, L. FTIR spectroscopy of nanodiamonds: methods and interpretation. Diamond Relat. Mater. 2018, 89, 52-66.
doi: 10.1016/j.diamond.2018.08.005
Duncan, W.; Williams, G. P. Infrared synchrotron radiation from electron storage rings. Appl. Opt. 1983, 22, 2914-2923.
doi: 10.1364/AO.22.002914
Singley, E.; Abo-Bakr, M.; Basov, D.; Feikes, J.; Guptasarma, P.; Holldack, K.; Hübers, H.; Kuske, P.; Martin, M. C.; Peatman, W. Measuring the Josephson plasma resonance in Bi2Sr2CaCu2O8 using intense coherent THz synchrotron radiation. Phys. Rev. B 2004, 69, 092512-092515.
doi: 10.1103/PhysRevB.69.092512
Hu, C. S.; Wang, X.; Qi, Z. M.; Li, C. X. The new infrared beamline at NSRL. Infrared Phys. Technol. 2020, 105, 103200-103204.
doi: 10.1016/j.infrared.2020.103200
Su, H.; Zhou, W.; Zhang, H.; Zhou, W.; Zhao, X.; Li, Y.; Liu, M.; Cheng, W.; Liu, Q. Dynamic evolution of solid-liquid electrochemical interfaces over single-atom active sites. J. Am. Chem. Soc. 2020, 142, 12306-12313.
doi: 10.1021/jacs.0c04231
Hirschmugl, C.; Williams, G. Signal-to-noise improvements with a new far-IR rapid scan Michelson interferometer. Rev. Sci. Instrum. 1995, 66, 1487-1488.
doi: 10.1063/1.1145949
Marcelli, A.; Cricenti, A.; Kwiatek, W. M.; Petibois, C. Biological applications of synchrotron radiation infrared spectromicroscopy. Biotechnol. Adv. 2012, 30, 1390-1404.
doi: 10.1016/j.biotechadv.2012.02.012
Nichols, E. F. A study of the transmission spectra of certain substances in the infra-red. Phys. Rev. (Series I) 1893, 1, 1-18.
doi: 10.1103/PhysRevSeriesI.1.1
Coates, V. J.; Offner, A.; Siegler, E. Design and performance of an infrared microscope attachment. J. Opt. Soc. Am. 1953, 43, 984-989.
doi: 10.1364/JOSA.43.000984
Golden, W. G.; Saperstein, D. D. Phenomena, R. Fourier transform infrared reflection-absorption spectroscopy of surface species. J. Electron. Spectrosc. Relat. Phenom. 1983, 30, 43-50.
doi: 10.1016/0368-2048(83)85032-4
Sherma, J. Fourier transform infrared (FT-IR) spectrometry. J. AOAC Int. 2004, 87, 113A-118A.
Mattson, E. C.; Nasse, M. J.; Rak, M.; Gough, K. M.; Hirschmugl, C. J. Restoration and spectral recovery of mid-infrared chemical images. Anal. Chem. 2012, 84, 6173-6180.
doi: 10.1021/ac301080h
Greenler, R. G. Infrared study of adsorbed molecules on metal surfaces by reflection techniques. J. Chem. Phys. 1966, 44, 310-315.
doi: 10.1063/1.1726462
Roy, P.; Brubach, J. -B.; Calvani, P.; DeMarzi, G.; Filabozzi, A.; Gerschel, A.; Giura, P.; Lupi, S.; Marcouillé, O.; Mermet, A. Infrared synchrotron radiation: from the production to the spectroscopic and microscopic applications. Nucl. Instrum. Methods Phys. Res., Sect. A 2001, 467, 426-436.
Hirschmugl, C. Infrared synchrotron radiation instrumentation and applications. Nucl. Instrum. Methods Phys. Res. Sect. A 1992, 319, 245-249.
doi: 10.1016/0168-9002(92)90561-H
Stavitski, E.; Kox, M. H.; Swart, I.; de Groot, F. M.; Weckhuysen, B. M. In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals. Angew. Chem. Int. Ed. 2008, 120, 3599-3603.
doi: 10.1002/ange.200705562
Buurmans, I. L.; Soulimani, F.; Ruiz-Martínez, J.; Van Der Bij, H. E.; Weckhuysen, B. M. Structure and acidity of individual fluid catalytic cracking catalyst particles studied by synchrotron-based infrared micro-spectro-scopy. Microporous Mesoporous Mater. 2013, 166, 86-92.
doi: 10.1016/j.micromeso.2012.08.007
Dumas, P.; Jamin, N.; Teillaud, J.; Miller, L.; Beccard, B. Imaging capabilities of synchrotron infrared microspectroscopy. Faraday Discuss. 2004, 126, 289-302.
doi: 10.1039/b305065c
Kovar, M.; Kasza, R.; Griffiths, K.; Norton, P.; Williams, G.; Van Campen, D. Synchrotron radiation FTIR spectroscopic studies of water on Ni(110). Surf. Rev. Lett. 1998, 5, 589-598.
doi: 10.1142/S0218625X98000979
Li, X.; Yang, X.; Zhang, J.; Huang, Y.; Liu, B. In situ/operando techniques for characterization of single-atom catalysts. ACS Catal. 2019, 9, 2521-2531.
doi: 10.1021/acscatal.8b04937
Carr, G. Resolution limits for infrared microspectroscopy explored with synchrotron radiation. Rev. Sci. Instrum. 2001, 72, 1613-1619.
doi: 10.1063/1.1347965
Levenson, E.; Lerch, P.; Martin, M. C. Spatial resolution limits for synchrotron-based spectromicroscopy in the mid- and near-infrared. J. Synchrotron Radiat. 2008, 15, 323-328.
doi: 10.1107/S0909049508004524
Lobo, R.; LaVeigne, J.; Reitze, D.; Tanner, D.; Carr, G. Subnanosecond, time-resolved, broadband infrared spectroscopy using synchrotron radiation. Rev. Sci. Instrum. 2002, 73, 1-10.
doi: 10.1063/1.1416111
Zhang, Y.; Zhang, H.; Liu, A.; Chen, C.; Song, W.; Zhao, J. Rate-limiting O-O bond formation pathways for water oxidation on hematite photoanode. J. Am. Chem. Soc. 2018, 140, 3264-3269.
doi: 10.1021/jacs.7b10979
Chittur, K. K. FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials 1998, 19, 357-369.
doi: 10.1016/S0142-9612(97)00223-8
Martin, M. C.; Schade, U.; Lerch, P.; Dumas, P. Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy. TrAC, Trends Anal. Chem. 2010, 29, 453-463.
doi: 10.1016/j.trac.2010.03.002
Dumas, P.; Miller, L.; Tobin, M. Challenges in biology and medicine with synchrotron infrared light. Acta Phys. Pol. 2009, 115, 446-454.
doi: 10.12693/APhysPolA.115.446
Eischens, R.; Pliskin, W. The infrared spectra of adsorbed molecules. Adv. Catal. 1958, 10, 1-56.
Willey, R. Fourier transform infrared spectrophotometer for transmittance and diffuse reflectance measurements. Appl. Spectrosc. 1976, 30, 593-601.
doi: 10.1366/000370276774456642
Mudunkotuwa, I. A.; Al Minshid, A.; Grassian, V. H. ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid-solid interface in environmentally and biologically relevant media. Analyst 2014, 139, 870-881.
doi: 10.1039/C3AN01684F
Hoffmann, F. Infrared reflection-absorption adsorbed molecules spectroscopy. Surf. Sci. Rep. 1983, 3, 107-192.
doi: 10.1016/0167-5729(83)90001-8
Miki, A.; Ye, S.; Osawa, M. Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions. Chem. Commun. 2002, 1500-1501.
Nayak, S.; McPherson, I. J.; Vincent, K. A. Adsorbed intermediates in oxygen reduction on platinum nanoparticles observed by in situ IR spectroscopy. Angew. Chem. Int. Ed. 2018, 57, 12855-12858.
doi: 10.1002/anie.201804978
Zaera, F. New advances in the use of infrared absorption spectro-scopy for the characterization of heterogeneous catalytic reactions. Chem. Soc. Rev. 2014, 43, 7624-7663.
doi: 10.1039/C3CS60374A
Ortiz-Hernandez, I.; Williams, C. T. In situ investigation of solid-liquid catalytic interfaces by attenuated total reflection infrared spectroscopy. Langmuir 2003, 19, 2956-2962.
doi: 10.1021/la020799n
Kan, B. -C.; Boo, J. -H.; Lee, I.; Zaera, F. Thermal chemistry of tetrakis (ethylmethylamido) titanium on Si (100) surfaces. J. Phys. Chem. A 2009, 113, 3946-3954.
doi: 10.1021/jp8102172
Kaim, W.; Fiedler, J. Spectroelectrochemistry: the best of two worlds. Chem. Soc. Rev. 2009, 38, 3373-3382.
doi: 10.1039/b504286k
Cheng, W.; Zhao, X.; Su, H.; Tang, F.; Che, W.; Zhang, H.; Liu, Q. Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 2019, 4, 115-122.
doi: 10.1038/s41560-018-0308-8
Lv, C.; Zhong, L.; Liu, H.; Fang, Z.; Yan, C.; Chen, M.; Kong, Y.; Lee, C.; Liu, D.; Li, S.; Liu, J.; Song, L.; Chen, G.; Yan, Q.; Yu, G. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 2021, 4, 868-876.
doi: 10.1038/s41893-021-00741-3
Dionigi, F.; Zeng, Z.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M. B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 2020, 11, 1-10.
doi: 10.1038/s41467-019-13993-7
Su, H.; Soldatov, M. A.; Roldugin, V.; Liu, Q. Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation. eScience 2022, 2, 102-109.
doi: 10.1016/j.esci.2021.12.007
Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060-2086.
doi: 10.1039/C4CS00470A
Yin, Q.; Tan, J. M.; Besson, C.; Geletii, Y. V.; Musaev, D. G.; Kuznetsov, A. E.; Luo, Z.; Hardcastle, K. I.; Hill, C. L. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 2010, 328, 342-345.
doi: 10.1126/science.1185372
Zhang, X.; Sun, X.; Li, Y.; Hu, F.; Xu, Y.; Tian, J.; Zhang, H.; Liu, Q.; Su, H.; Wei, S. Reduced interfacial tension on ultrathin NiCr-LDH nanosheet arrays for efficient electrocatalytic water oxidation. J. Mater. Chem. A 2021, 9, 16706-16712.
doi: 10.1039/D1TA03863J
Gloag, L.; Benedetti, T. M.; Cheong, S.; Li, Y.; Chan, X. H.; Lacroix, L. M.; Chang, S. L. Y.; Arenal, R.; Florea, I.; Barron, H.; Barnard, A. S.; Henning, A. M.; Zhao, C.; Schuhmann, W.; Gooding, J. J.; Tilley, R. D. Three-dimensional branched and faceted gold-ruthenium nanoparticles: using nanostructure to improve stability in oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 2018, 57, 10241-10245.
doi: 10.1002/anie.201806300
Su, H.; Zhao, X.; Cheng, W.; Zhang, H.; Li, Y.; Zhou, W.; Liu, M.; Liu, Q. Hetero-N-coordinated Co single sites with high turnover frequency for efficient electrocatalytic oxygen evolution in an acidic medium. ACS Energy Lett. 2019, 4, 1816-1822.
doi: 10.1021/acsenergylett.9b01129
Lin, C.; Li, J. -L.; Li, X.; Yang, S.; Luo, W.; Zhang, Y.; Kim, S. -H.; Kim, D. -H.; Shinde, S. S.; Li, Y. -F.; Liu, Z. -P.; Jiang, Z.; Lee, J. -H. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 2021, 4, 1012-1023.
doi: 10.1038/s41929-021-00703-0
Zhao, X.; Su, H.; Cheng, W.; Zhang, H.; Che, W.; Tang, F.; Liu, Q. Operando insight into the oxygen evolution kinetics on the metal-free carbon-based electrocatalyst in an acidic solution. ACS Appl. Mater. Interfaces 2019, 11, 34854-34861.
doi: 10.1021/acsami.9b09315
Cao, L.; Luo, Q.; Chen, J.; Wang, L.; Lin, Y.; Wang, H.; Liu, X.; Shen, X.; Zhang, W.; Liu, W.; Qi, Z.; Jiang, Z.; Yang, J.; Yao, T. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 2019, 10, 4849-4857.
doi: 10.1038/s41467-019-12886-z
Su, H.; Zhou, W.; Zhou, W.; Li, Y.; Zheng, L.; Zhang, H.; Liu, M.; Zhang, X.; Sun, X.; Xu, Y.; Hu, F.; Zhang, J.; Hu, T.; Liu, Q.; Wei, S. In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation. Nat. Commun. 2021, 12, 6118-6126.
doi: 10.1038/s41467-021-26416-3
Zhang, Q.; Guan, J. Applications of atomically dispersed oxygen reduction catalysts in fuel cells and zinc-air batteries. Energy Environ. Mater. 2020, 4, 307-335.
Zhou, W.; Su, H.; Shen, S.; Li, Y.; Zhang, H.; Liu, M.; Zhao, X.; Cheng, W.; Yao, P.; Liu, Q. Co-Ni nanoalloy-organic framework electrocatalysts with ultrahigh electron transfer kinetics for efficient oxygen reduction. ACS Sustainable Chem. Eng. 2020, 8, 6898-6904.
doi: 10.1021/acssuschemeng.0c02271
Zhou, Z.; Kong, Y.; Tan, H.; Huang, Q.; Wang, C.; Pei, Z.; Wang, H.; Liu, Y.; Wang, Y.; Li, S.; Liao, X.; Yan, W.; Zhao, S. Cation-vacancy-enriched nickel phosphide for efficient electrosynthesis of hydrogen peroxides. Adv. Mater. 2022, e2106541.
Liu, M.; Li, Y.; Qi, Z.; Su, H.; Cheng, W.; Zhou, W.; Zhang, H.; Sun, X.; Zhang, X.; Xu, Y.; Jiang, Y.; Liu, Q.; Wei, S. Self-nanocavity-confined halogen anions boosting the high selectivity of the two-electron oxygen reduction pathway over Ni-based MOFs. J. Phys. Chem. Lett. 2021, 12, 8706-8712.
doi: 10.1021/acs.jpclett.1c01981
Ke, K.; Wang, G.; Cao, D.; Wang, G. J. E. Recent advances in the electrooxidation of urea for direct urea fuel cell and urea electrolysis. Top. Curr. Chem. 2020, 41-78.
Sayed, E. T.; Eisa, T.; Mohamed, H. O.; Abdelkareem, M. A.; Allagui, A.; Alawadhi, H.; Chae, K. -J. Direct urea fuel cells: challenges and opportunities. J. Power Sources 2019, 417, 159-175.
doi: 10.1016/j.jpowsour.2018.12.024
Geng, S. -K.; Zheng, Y.; Li, S. -Q.; Su, H.; Zhao, X.; Hu, J.; Shu, H. -B.; Jaroniec, M.; Chen, P.; Liu, Q. -H.; Qiao, S. -Z. Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy 2021, 6, 904-912.
doi: 10.1038/s41560-021-00899-2
Service, R. F. New recipe produces ammonia from air, water, and sunlight. Science 2014, 345, 610.
doi: 10.1126/science.345.6197.610
Giddey, S.; Badwal, S.; Kulkarni, A. Review of electrochemical ammonia production technologies and materials. Int. J. Hydrogen Energy 2013, 38, 14576-14594.
doi: 10.1016/j.ijhydene.2013.09.054
Tan, H.; Ji, Q.; Wang, C.; Duan, H.; Kong, Y.; Wang, Y.; Feng, S.; Lv, L.; Hu, F.; Zhang, W.; Chu, W.; Sun, Z.; Yan, W. Asymmetrical π back-donation of hetero-dicationic Mo4+-Mo6+ pairs for enhanced electrochemical nitrogen reduction. Nano Res. 2021, 15, 3010-3016.
Chen, C.; Zhu, X.; Wen, X.; Zhou, Y.; Zhou, L.; Li, H.; Tao, L.; Li, Q.; Du, S.; Liu, T.; Yan, D.; Xie, C.; Zou, Y.; Wang, Y.; Chen, R.; Huo, J.; Li, Y.; Cheng, J.; Su, H.; Zhao, X.; Cheng, W.; Liu, Q.; Lin, H.; Luo, J.; Chen, J.; Dong, M.; Cheng, K.; Li, C.; Wang, S. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 2020, 12, 717-724.
doi: 10.1038/s41557-020-0481-9
Li, C.; Baek, J. -B. Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega 2019, 5, 31-40.
Mahmood, J.; Li, F.; Jung, S. -M.; Okyay, M. S.; Ahmad, I.; Kim, S. -J.; Park, N.; Jeong, H. Y.; Baek, J. -B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotech. 2017, 12, 441-446.
doi: 10.1038/nnano.2016.304
Li, Y.; He, J.; Cheng, W.; Su, H.; Li, C.; Zhang, H.; Liu, M.; Zhou, W.; Chen, X.; Liu, Q. High mass-specific reactivity of a defect-enriched Ru electrocatalyst for hydrogen evolution in harsh alkaline and acidic media. Sci. China Mater. 2021, 64, 2467-2476.
doi: 10.1007/s40843-020-1656-0
Zhang, H.; Su, H.; Soldatov, M. A.; Li, Y.; Zhao, X.; Liu, M.; Zhou, W.; Zhang, X.; Sun, X.; Xu, Y.; Yao, P.; Wei, S.; Liu, Q. Dynamic CoRu bond shrinkage at atomically dispersed Ru sites for alkaline hydrogen evolution reaction. Small 2021, 17, 2105231-2105237.
doi: 10.1002/smll.202105231
He, Q.; Zhou, Y.; Shou, H.; Wang, X.; Zhang, P.; Xu, W.; Qiao, S.; Wu, C.; Liu, H.; Liu, D.; Chen, S.; Long, R.; Qi, Z.; Wu, X.; Song, L. Synergic reaction kinetics over adjacent ruthenium sites for superb hydrogen generation in alkaline media. Adv. Mater. 2022, e2110604.
Cao, D.; Sheng, B.; Qi, Z.; Xu, W.; Chen, S.; Moses, O. A.; Long, R.; Xiong, Y.; Wu, X.; Song, L. Self-optimizing iron phosphorus oxide for stable hydrogen evolution at high current. Appl. Catal., B 2021, 298, 120559-120566.
doi: 10.1016/j.apcatb.2021.120559
Li, N.; Tan, H.; Ding, X.; Duan, H.; Hu, W.; Li, G.; Ji, Q.; Lu, Y.; Wang, Y.; Hu, F.; Wang, C.; Cheng, W.; Sun, Z.; Yan, W. Phase-mediated robust interfacial electron-coupling over core-shell Co@carbon towards superior overall water splitting. Appl. Catal., B 2020, 266, 118621-118627.
doi: 10.1016/j.apcatb.2020.118621
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Zhipeng Wan , Hao Xu , Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242
Yan-Li Li , Zhi-Ming Li , Kai-Kai Wang , Xiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Zhili Li , Qijun Wo , Dongdong Huang , Dezhong Zhou , Lei Guo , Yeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
Ningyue Xu , Jun Wang , Lei Liu , Changyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225
Ling-Hao Zhao , Hai-Wei Yan , Jian-Shuang Jiang , Xu Zhang , Xiang Yuan , Ya-Nan Yang , Pei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863
Chengde Wang , Liping Huang , Shanshan Wang , Lihao Wu , Yi Wang , Jun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383
Shiyu Hou , Maolin Sun , Liming Cao , Chaoming Liang , Jiaxin Yang , Xinggui Zhou , Jinxing Ye , Ruihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761
Wenxiang Ma , Xinyu He , Tianyi Chen , De-Li Ma , Hongzheng Chen , Chang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Huijie An , Chen Yang , Zhihui Jiang , Junjie Yuan , Zhongming Qiu , Longhao Chen , Xin Chen , Mutu Huang , Linlang Huang , Hongju Lin , Biao Cheng , Hongjiang Liu , Zhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134
Bei Li , Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
Yudi Cheng , Xiao Wang , Jiao Chen , Zihan Zhang , Jiadong Ou , Mengyao She , Fulin Chen , Jianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156