Citation: Yaoyao Chen, Changhao Gao, Tian Yang, Wenjing Li, Haojie Xu, Zhihua Sun. Research Advances of Ferroelectric Semiconductors of 2D Hybrid Perovskites toward Photoelectronic Applications[J]. Chinese Journal of Structural Chemistry, ;2022, 41(4): 220400. doi: 10.14102/j.cnki.0254-5861.2022-0013 shu

Research Advances of Ferroelectric Semiconductors of 2D Hybrid Perovskites toward Photoelectronic Applications

  • Corresponding author: Zhihua Sun, sunzhihua@fjirsm.ac.cn
  • Yaoyao Chen and Changhao Gao contribute equally to this work.
  • Received Date: 19 January 2022
    Accepted Date: 11 February 2022

Figures(12)

  • Ferroelectric materials, characterized by the switchable spontaneous polarization (Ps) through reversing the directions of external electric field, exhibit versatile physical attributes that have been extensively used for practical device applications. Two-dimensional (2D) organic-inorganic hybrid perovskites are recently emerging as a robust family of candidate ferroelectrics, termed ferroelectric semiconductors. In particular, the coexistence and/or coupling of ferroelectric polarization with their semiconducting properties enables new physical concepts, thus providing a potential platform for the development of new multifunctional optoelectronic devices. This review primarily describes the structural origin of symmetry breaking for generating ferroelectric orders in 2D hybrid perovskites, and then presents the combination of ferroelectric Ps with other semiconducting optoelectronic activities. Regarding the emergence of new photoelectric behaviors, the prospects for this 2D family of ferroelectric semiconductors are further discussed, along with their development tendency for the future photoelectronic device applications.
  • 加载中
    1. [1]

      Sun, Z. H.; Yi, X. F.; Tao, K. W.; Ji, C. M.; Liu, X. T.; Li, L. N.; Han, S. G.; Zheng, A. M.; Hong, M. C.; Luo, J. H. A molecular ferroelectric showing room-temperature record-fast switching of spontaneous polarization. Angew. Chem. Int. Ed. 2018, 57, 9833–9837.  doi: 10.1002/anie.201805776

    2. [2]

      Pandey, R.; Vats, G.; Yun, J.; Bowen, C. R.; Ho-Baillie, A. W. Y.; Seidel, J.; Butler, K. T.; Seok, S. I. Mutual insight on ferroelectrics and hybrid halide perovskites: a platform for future multifunctional energy conversion. Adv. Mater. 2019, 31, 1807376.  doi: 10.1002/adma.201807376

    3. [3]

      You, Y. M.; Liao, W. Q.; Zhao, D. W.; Ye, H. Y.; Zhang, Y.; Zhou, Q. H.; Niu, X. H.; Wang, J. L.; Li, P. F.; Fu, D. W.; Wang, Z. M.; Gao, S.; Yang, K. L.; Liu, J. M.; Li, J. Y.; Yan, Y. F.; Xiong, R. G. An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science 2017, 357, 306–309.  doi: 10.1126/science.aai8535

    4. [4]

      Scott, J. F. Applications of modern ferroelectrics. Science 2007, 315, 954–959.  doi: 10.1126/science.1129564

    5. [5]

      Scott, J. F. Ferroelectric Memories Springer-Verlag. Berlin 2000.

    6. [6]

      Ye, Z. G. Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, Properties and Applications. Elsevier 2008.

    7. [7]

      Spaldin, N. A.; Fiebig, M.; Mostovoy, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. : Condens. Matter. 2008, 20, 434203.  doi: 10.1088/0953-8984/20/43/434203

    8. [8]

      Litvin, D. B. Ferroic classifications extended to ferrotoroidic crystals. Acta Crystallogr. Sect. A: Found. Crystallogr. 2008, 64, 316–320.  doi: 10.1107/S0108767307068262

    9. [9]

      Lee, J. H.; Fang, L.; Vlahos, E.; Ke, X.; Jung, Y. W.; Kourkoutis, L. F.; Kim, J. W.; Ryan, P. J.; Heeg, T.; Roeckerath, M.; Goian, V.; Bernhagen, M.; Uecker, R.; Hammel, P. C.; Rabe, K. M.; Kamba, S.; Schubert, J.; Freeland, J. W.; Muller, D. A.; Fennie, C. J.; Schiffer, P.; Gopalan, V.; Johnston-Halperin, E.; Schlom, D. G. A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature 2010, 466, 954–958.  doi: 10.1038/nature09331

    10. [10]

      Horiuchi, S.; Tokura, Y. Organic ferroelectrics. Nat. Mater. 2008, 7, 357–366.  doi: 10.1038/nmat2137

    11. [11]

      Hu, P. F.; Hu, S. B.; Huang, Y. D.; Reimers, J. R.; Rappe, A. M.; Li, Y. L.; Stroppa, A.; Ren, W. Bioferroelectric properties of glycine crystals. J. Phys. Chem. Lett. 2019, 10, 1319–1324.  doi: 10.1021/acs.jpclett.8b03837

    12. [12]

      Fu, D. W.; Zhang, W.; Cai, H. L.; Ge, J. Z.; Zhang, Y.; Xiong, R. G. Diisopropylammonium chloride: a ferroelectric organic salt with a high phase transition temperature and practical utilization level of spontaneous polarization. Adv. Mater. 2011, 23, 201102938.

    13. [13]

      Valasek, J. Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 1921, 17, 475–481.  doi: 10.1103/PhysRev.17.475

    14. [14]

      Han, S. G.; Li, M. F.; Liu, Y.; Guo, W. Q.; Hong, M. C.; Sun, Z. H.; Luo, J. H. Tailoring of a visible-light-absorbing biaxial ferroelectric towards broadband self-driven photodetection. Nat. Commun. 2021, 12, 284.  doi: 10.1038/s41467-020-20530-4

    15. [15]

      Fu, D. W.; Cai, H. L.; Liu, Y. M.; Ye, Q.; Zhang, W.; Zhang, Y.; Chen, X. Y.; Giovannetti, G.; Capone, M.; Li, J. Y.; Xiong, R. G. Diisopropyl-ammonium bromide is a high-temperature molecular ferroelectric crystal. Science 2013, 339, 425–428.  doi: 10.1126/science.1229675

    16. [16]

      Ye, H. Y.; Tang, Y. Y.; Li, P. F.; Liao, W. Q.; Gao, J. X.; Hua, X. N.; Cai, H.; Shi, P. P.; You, Y. M.; Xiong, R. G. Metal-free three-dimensional perovskite ferroelectrics. Science 2018, 361, 151–155.  doi: 10.1126/science.aas9330

    17. [17]

      Xu, H. J.; Guo, W. Q.; Wang, J. Q.; Ma, Y.; Han, S. G.; Liu, Y.; Lu, L.; Pan, X.; Luo, J. H.; Sun, Z. H. A metal-free molecular antiferroelectric material showing high phase transition temperatures and large electrocaloric effects. J. Am. Chem. Soc. 2021, 143, 14379–14385.  doi: 10.1021/jacs.1c07521

    18. [18]

      Kundys, B.; Lappas, A.; Viret, M.; Kapustianyk, V.; Rudyk, V.; Semak, S.; Simon, C.; Bakaimi, I. Multiferroicity and hydrogen-bond ordering in (C2H5NH3)2CuCl4 featuring dominant ferromagnetic interactions. Phys. Rev. B 2010, 81, 224434.  doi: 10.1103/PhysRevB.81.224434

    19. [19]

      Li, L. N.; Liu, X. T.; Li, Y. B.; Xu, Z.; Wu, Z. Y.; Han, S. G.; Tao, K. W.; Hong, M. C.; Luo, J. H.; Sun, Z. H. Two-dimensional hybrid perovskite-type ferroelectric for highly polarization-sensitive shortwave photodetection. J. Am. Chem. Soc. 2019, 141, 2623–2629.  doi: 10.1021/jacs.8b12948

    20. [20]

      Ma, Y.; Wang, J. Q.; Guo, W. Q.; Han, S. G.; Xu, J. L.; Liu, Y.; Lu, L.; Xie, Z. D.; Luo, J. H.; Sun, Z. H. The first improper ferroelectric of 2D multilayered hybrid perovskite enabling strong tunable polarization-directed second harmonic generation effect. Adv. Fun. Mater. 2021, 31, 2103012.  doi: 10.1002/adfm.202103012

    21. [21]

      Liu, H. Y.; Zhang, H. Y.; Chen, X. G.; Xiong, R. G. Molecular design principles for ferroelectrics: ferroelectrochemistry. J. Am. Chem. Soc. 2020, 142, 15205–15218.  doi: 10.1021/jacs.0c07055

    22. [22]

      Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 1992, 358, 136–138.  doi: 10.1038/358136a0

    23. [23]

      Fu, H. X.; Cohen, R. E. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 2000, 403, 281–283.  doi: 10.1038/35002022

    24. [24]

      Saha, S.; Sinha, T. P.; Mookerjee, A. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3. Phys. Rev. B 2000, 62, 8828–8834.  doi: 10.1103/PhysRevB.62.8828

    25. [25]

      Levin, I.; Tucker, M. C.; Wu, H.; Provenzano, V.; Dennis, C. L.; Karimi, S.; Comyn, T.; Stevenson, T.; Smith, R. I.; Reaney, I. M. Displacive phase transitions and magnetic structures in Nd-substituted BiFeO3. Chem. Mater. 2011, 23, 2166–2175.  doi: 10.1021/cm1036925

    26. [26]

      Shi, P. P.; Tang, Y. Y.; Li, P. F.; Liao, W. Q.; Wang, Z. X.; Ye, Q.; Xiong, R. G. Symmetry breaking in molecular ferroelectrics. Chem. Soc. Rev. 2016, 45, 3811–3827.  doi: 10.1039/C5CS00308C

    27. [27]

      Zhang, W.; Xiong, R. G. Ferroelectric metal-organic frameworks. Chem. Rev. 2012, 112, 1163–1195.  doi: 10.1021/cr200174w

    28. [28]

      Xu, G. C.; Ma, X. M.; Zhang, L.; Wang, Z. M.; Gao, S. Disorder-order ferroelectric transition in the metal formate framework of [NH4][Zn(HCOO)3]. J. Am. Chem. Soc. 2010, 132, 9588–9590.  doi: 10.1021/ja104263m

    29. [29]

      Xu, G. C.; Zhang, W.; Ma, X. M.; Chen, Y. H.; Zhang, L.; Cai, H. L.; Wang, Z. M.; Xiong, R. G.; Gao, S. Coexistence of magnetic and electric orderings in the metal-formate frameworks of [NH4][M(HCOO)3]. J. Am. Chem. Soc. 2011, 133, 14948–14951.  doi: 10.1021/ja206891q

    30. [30]

      Xu, H. J.; Han, S. G.; Sun, Z. H.; Luo, J. H. Recent advances of two-dimensional organic-inorganic hybrid perovskite ferroelectric materials. Acta Chim. Sin. 2021, 79, 23–35.  doi: 10.6023/A20080375

    31. [31]

      Wang, Y. N.; Huang, J. W.; Wang, L.; She, H. D.; Wang, Q. Z. Research progress of ferrite materials for photoelectrochemical water splitting. Chin. J. Struct. Chem. 2022, 41, 2201054–2201068.

    32. [32]

      Ji, C. M.; Li, Y. Z.; Liu, X. T.; Wang, Y. X.; Zhu, T. T.; Chen, Q.; Li, L. N.; Wang, S. A.; Luo, J. H. Monolayer-to-multilayer dimensionality reconstruction in a hybrid perovskite for exploring the bulk photovoltaic effect enables passive X-ray detection. Angew. Chem. Int. Ed. 2021, 60, 20970–20976.  doi: 10.1002/anie.202108145

    33. [33]

      Li, M. F.; Han, S. G.; Liu, Y.; Luo, J. H.; Hong, M. C.; Sun, Z. H. Soft perovskite-type antiferroelectric with giant electrocaloric strength near room temperature. J. Am. Chem. Soc. 2020, 142, 20744–20751.  doi: 10.1021/jacs.0c09601

    34. [34]

      Han, S. G.; Wang, G. E.; Xu, G.; Luo, J. H.; Sun, Z. H. Ferroelectric perovskite-type films with robust in-plane polarization toward efficient room-temperature chemiresistive sensing. Fundam. Res. 2022, doi: 10.1016/j.fmre.2022.01.015.  doi: 10.1016/j.fmre.2022.01.015

    35. [35]

      Zhang, H.; Chen, X.; Tang, Y.; Liao, W.; Di, F.; Mu, X.; Peng, H.; Xiong, R. PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics. Chem. Soc. Rev. 2021, 50, 8248–8278.  doi: 10.1039/C9CS00504H

    36. [36]

      You, Y. M.; Tang, Y. Y.; Li, P. F.; Zhang, H. Y.; Zhang, W. Y.; Zhang, Y.; Ye, H. Y.; Nakamura, T.; Xiong, R. G. Quinuclidinium salt ferroelectric thin-film with duodecuple-rotational polarization-directions. Nat. Commun. 2017, 8, 14934.  doi: 10.1038/ncomms14934

    37. [37]

      Tang, Y. Y.; Xie, Y. F.; Zeng, Y. L.; Liu, J. C.; He, W. H.; Huang, X. Q.; Xiong, R. G. Record enhancement of phase transition temperature realized by H/F substitution. Adv. Mater. 2020, 32, 2003530.

    38. [38]

      Ji, C. M.; Wang, S.; Li, L. N.; Sun, Z. H.; Hong, M. C.; Luo, J. H. The first 2D hybrid perovskite ferroelectric showing broadband white-light emission with high color rendering index. Adv. Fun. Mater. 2018, 29, 1805038.

    39. [39]

      Cortecchia, D.; Yin, J.; Bruno, A.; Lo, S. A.; Gurzadyan, G. G.; Mhaisalkar, S.; Brédas, J.; Soci, C. Polaron self-localization in white-light emitting hybrid perovskites. J. Mater. Chem. C 2017, 5, 2771–2780.  doi: 10.1039/C7TC00366H

    40. [40]

      Sha, T. T.; Xiong, Y. A.; Pan, Q.; Chen, X. G.; Song, X. J.; Yao, J.; Miao, S. R.; Jing, Z. Y.; Feng, Z. J.; You, Y. M.; Xiong, R. G. Fluorinated 2D lead iodide perovskite ferroelectrics. Adv. Mater. 2019.

    41. [41]

      Aizu, K. Possible species of "ferroelastic" crystals and of simultaneously ferroelectric and ferroelastic crystals. J. Phys. Soc. Jpn. 1969, 27, 387–396.  doi: 10.1143/JPSJ.27.387

    42. [42]

      Aizu, K. Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phys. Rev. B 1970, 2, 754–772.  doi: 10.1103/PhysRevB.2.754

    43. [43]

      Ji, C. M.; Dey, D.; Peng, Y.; Liu, X. T.; Li, L. N.; Luo, J. H. Ferroelectricity-driven self-powered ultraviolet photodetection with strong polarization sensitivity in a two-dimensional halide hybrid perovskite. Angew. Chem. Int. Ed. 2020, 59, 18933–18937.  doi: 10.1002/anie.202005092

    44. [44]

      Huang, P. J.; Taniguchi, K.; Miyasaka, H. Bulk photovoltaic effect in a pair of chiral-polar layered perovskite-type lead iodides altered by chirality of organic cations. J. Am. Chem. Soc. 2019, 141, 14520–14523.  doi: 10.1021/jacs.9b06815

    45. [45]

      Ji, W.; Yao, K.; Liang, Y. C. Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films. Adv. Mater. 2010, 22, 1763–1766.  doi: 10.1002/adma.200902985

    46. [46]

      Yang, S. Y.; Seidel, J.; Byrnes, S. J.; Shafer, P.; Yang, C. H.; Rossell, M. D.; Yu, P.; Chu, Y. H.; Scott, J. F.; Ager, J. W., 3rd; Martin, L. W.; Ramesh, R. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 2010, 5, 143–147.  doi: 10.1038/nnano.2009.451

    47. [47]

      Li, L. N.; Sun, Z. H.; Wang, P.; Hu, W. D.; Wang, S. S.; Ji, C. M.; Hong, M. C.; Luo, J. H. Tailored engineering of an unusual (C4H9NH3)2(CH3NH3)2Pb3Br10 two-dimensional multilayered perovskite ferroelectric for a high-performance photodetector. Angew. Chem. Int. Ed. 2017, 56, 12150–12154.  doi: 10.1002/anie.201705836

    48. [48]

      Li, L. N.; Shang, X. Y.; Wang, S. S.; Dong, N. N.; Ji, C. M.; Chen, X. Y.; Zhao, S. G.; Wang, J.; Sun, Z. H.; Hong, M. C.; Luo, J. H. Bilayered hybrid perovskite ferroelectric with giant two-photon absorption. J. Am. Chem. Soc. 2018, 140, 6806–6809.  doi: 10.1021/jacs.8b04014

    49. [49]

      Zhang, R.; Fan, J. D.; Zhang, X.; Yu, H. H.; Zhang, H. J.; Mai, Y. H.; Xu, T. X.; Wang, J. Y.; Snaith, H. J. Nonlinear optical response of organic-inorganic halide perovskites. ACS Photonics 2016, 3, 371–377.  doi: 10.1021/acsphotonics.5b00563

    50. [50]

      Wang, J. Q.; Liu, Y.; Han, S. G.; Ma, Y.; Li, Y. B.; Xu, Z. Y.; Luo, J. H.; Hong, M. C.; Sun, Z. H. Ultrasensitive polarized-light photodetectors based on 2D hybrid perovskite ferroelectric crystals with a low detection limit. Sci. Bull. 2021, 66, 158–163.  doi: 10.1016/j.scib.2020.06.018

    51. [51]

      Wu, Z. Y.; Ji, C. M.; Li, L. N.; Kong, J. T.; Sun, Z. H.; Zhao, S. G.; Wang, S. S.; Hong, M. C.; Luo, J. H. Alloying n-butylamine into CsPbBr3 to give a two-dimensional bilayered perovskite ferroelectric material. Angew. Chem. Int. Ed. 2018, 57, 8140–8143.  doi: 10.1002/anie.201803716

    52. [52]

      Liu, Y.; Pan, X.; Liu, X. T.; Han, S. G.; Wang, J. Q.; Lu, L.; Xu, H. J.; Sun, Z. H.; Luo, J. H. Tailoring interlayered spacers of 2D cesium-based perovskite ferroelectrics toward exceptional ferro-pyro-phototronic effects. Small 2021, 2106888.

    53. [53]

      Liu, Y.; Han, S. G.; Wang, J. Q.; Ma, Y.; Guo, W. Q.; Huang, X. Y.; Luo, J. H.; Hong, M. C.; Sun, Z. H. Spacer cation alloying of a homoconformational carboxylate trans isomer to boost in-plane ferroelectricity in a 2D hybrid perovskite. J. Am. Chem. Soc. 2021, 143, 2130–2137.  doi: 10.1021/jacs.0c12513

    54. [54]

      Wang, J.; Gudiksen, M. S.; Duan, X.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 2001, 293, 1455–1457.  doi: 10.1126/science.1062340

    55. [55]

      Peng, Y.; Liu, X. T.; Sun, Z. H.; Ji, C. M.; Li, L. N.; Wu, Z. Y.; Wang, S. S.; Yao, Y. P.; Hong, M. C.; Luo, J. H. Exploiting the bulk photovoltaic effect in a 2D trilayered hybrid ferroelectric for highly sensitive polarized light detection. Angew. Chem. Int. Ed. 2020, 59, 3933–3937.  doi: 10.1002/anie.201915094

    56. [56]

      Xu, Z. Y.; Weng, W.; Li, Y. B.; Liu, X. T.; Yang, T.; Li, M. F.; Huang, X. Y.; Luo, J. H.; Sun, Z. H. 3D-to-2D dimensional reduction for exploiting a multilayered perovskite ferroelectric toward polarized-light detection in the solar-blind ultraviolet region. Angew. Chem. Int. Ed. 2020, 59, 21693–21697.  doi: 10.1002/anie.202009329

    57. [57]

      Chen, H. Y.; Liu, K. W.; Hu, L. F.; Al-Ghamdi, A. A.; Fang, X. S. New concept ultraviolet photodetectors. Mater. Today 2015, 18, 493–502.  doi: 10.1016/j.mattod.2015.06.001

    58. [58]

      Xie, C.; Lu, X. T.; Tong, X. W.; Zhang, Z. X.; Liang, F. X.; Liang, L.; Luo, L. B.; Wu, Y. C. Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors. Adv. Fun. Mater. 2019, 29, 1806006.  doi: 10.1002/adfm.201806006

    59. [59]

      Sutherland, R. L. Handbook of Nonlinear Optics. CRC Press 2003.

    60. [60]

      Li, M. F.; Xu, Y. M.; Han, S. G.; Xu, J. L.; Xie, Z. D.; Liu, Y.; Xu, Z. Y.; Hong, M. C.; Luo, J. H.; Sun, Z. H. Giant and broadband multiphoton absorption nonlinearities of a 2D organometallic perovskite ferroelectric. Adv. Mater. 2020, 32, 2002972.

    61. [61]

      Nicolo, F.; Plancherel, D.; Chapuis, G.; Buenzli, J. C. G. Complexes of lanthanoid salts with macrocyclic ligands. 34. Glasslike structure in crystalline macrocyclic complexes: synthesis, X-ray diffraction, and laser-spectroscopic investigation of neodymium(III) and europium(III) complexes with 4, 13-dimethyl-1, 7, 10, 16-tetraoxa-4, 13-diazacyclooctadecane. Inorg. Chem. 1988, 27, 3518–3526.  doi: 10.1021/ic00293a018

    62. [62]

      Shi, C.; Ye, L.; Gong, Z. X.; Ma, J. J.; Wang, Q. W.; Jiang, J. Y.; Hua, M. M.; Wang, C. F.; Yu, H.; Zhang, Y.; Ye, H. Y. Two-dimensional organic-inorganic hybrid rare-earth double perovskite ferroelectrics. J. Am. Chem. Soc. 2020, 142, 545–551.  doi: 10.1021/jacs.9b11697

    63. [63]

      Guo, W. Q.; Liu, X. T.; Han, S. G.; Liu, Y.; Xu, Z. Y.; Hong, M. C.; Luo, J. H.; Sun, Z. H. Room-temperature ferroelectric material composed of a two-dimensional metal halide double perovskite for X-ray detection. Angew. Chem. Int. Ed. 2020, 59, 13879–13884.  doi: 10.1002/anie.202004235

    64. [64]

      Tsai, H.; Nie, W.; Blancon, J. C.; Stoumpos, C. C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S.; Pedesseau, L.; Even, J.; Alam, M. A.; Gupta, G.; Lou, J.; Ajayan, P. M.; Bedzyk, M. J.; Kanatzidis, M. G. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 2016, 536, 312–316.  doi: 10.1038/nature18306

    65. [65]

      Blancon, J. C.; Tsai, H.; Nie, W.; Stoumpos, C. C.; Pedesseau, L.; Katan, C.; Kepenekian, M.; Soe, C. M. M.; Appavoo, K.; Sfeir, M. Y.; Tretiak, S.; Ajayan, P. M.; Kanatzidis, M. G.; Even, J.; Crochet, J. J.; Mohite, A. D. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 2017, 355, 1288–1292.  doi: 10.1126/science.aal4211

  • 加载中
    1. [1]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    2. [2]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    3. [3]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    4. [4]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    5. [5]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    6. [6]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    7. [7]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

    8. [8]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    9. [9]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    10. [10]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    11. [11]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    12. [12]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    13. [13]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    14. [14]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    15. [15]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    16. [16]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    17. [17]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    18. [18]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    19. [19]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    20. [20]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

Metrics
  • PDF Downloads(24)
  • Abstract views(654)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return