Citation: Shitong Han, Bifang Li, Lijuan Huang, Hailing Xi, Zhengxin Ding, Jinlin Long. Construction of ZnIn2S4-CdIn2S4 Microspheres for Efficient Photo-catalytic Reduction of CO2 with Visible Light[J]. Chinese Journal of Structural Chemistry, ;2022, 41(1): 220100. doi: 10.14102/j.cnki.0254-5861.2021-0026 shu

Construction of ZnIn2S4-CdIn2S4 Microspheres for Efficient Photo-catalytic Reduction of CO2 with Visible Light

Figures(6)

  • ZnIn2S4 has emerged in water splitting and degradation of dyes due to its good stability and light absorption properties. However, there are still few reports of CO2 photoreduction. Herein, we successfully synthesized ZnIn2S4 and obtained a series of ZnIn2S4-CdIn2S4 heterostructured microspheres through the ion exchange method, and first used them in photocatalytic CO2 reduction in noble-metal-free systems. The activity results showed that these ZnIn2S4-CdIn2S4 photocatalysts exhibit excellent catalytic activity under visible light, and the best CO yield is as high as 33.57 μmol·h-1 with a selectivity of 91%. Furthermore, the stability and reusability of ZnIn2S4-CdIn2S4 was firmly confirmed by diverse characterizations, including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX) and N2 adsorption measurements.
  • 加载中
    1. [1]

      Armstrong, R. C.; Wolfram, C.; De Jong, K. P.; Gross, R.; Lewis, N. S.; Boardman, B.; Ragauskas, A. J.; Ehrhardt-Martinez, K.; Crabtree, G.; Ramana, M. V. The frontiers of energy. Nat. Energy 2016, 1, 15020.  doi: 10.1038/nenergy.2015.20

    2. [2]

      Fu, J.; Jiang, K.; Qiu, X.; Yu, J.; Liu, M. Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 2020, 32, 222–243.  doi: 10.1016/j.mattod.2019.06.009

    3. [3]

      Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179.  doi: 10.1021/acs.chemrev.8b00400

    4. [4]

      Rao, H.; Schmidt, L. C.; Bonin, J.; Robert, M. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 2017, 548, 74–77.  doi: 10.1038/nature23016

    5. [5]

      Chang, X.; Wang, T.; Yang, P.; Zhang, G.; Gong, J. The development of cocatalysts for photoelectrochemical CO2 reduction. Adv. Mater. 2019, 31, 1804710.  doi: 10.1002/adma.201804710

    6. [6]

      Tu, W.; Zhou, Y.; Zou, Z. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607–4626.  doi: 10.1002/adma.201400087

    7. [7]

      White, J. L.; Baruch, M. F.; Pander, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y.; Shaw, T. W.; Abelev, E.; Bocarsly, A. B. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888–12935.  doi: 10.1021/acs.chemrev.5b00370

    8. [8]

      Zhang, P.; Wang, S.; Guan, B. Y.; Lou, X. W. Fabrication of CdS hierarchical multi-cavity hollow particles for efficient visible light CO2 reduction. Energy Environ. Sci. 2019, 12, 164–168.  doi: 10.1039/C8EE02538J

    9. [9]

      Xia, Y.; Yu, J. Reaction: rational design of highly active photocatalysts for CO2 conversion. Chem 2020, 6, 1039–1040.  doi: 10.1016/j.chempr.2020.02.015

    10. [10]

      Liu, S.; Li, Y.; Ding, K.; Chen, W.; Zhang, Y.; Lin, W. Mechanism on carbon vacancies in polymeric carbon nitride for CO2 photoreduction. Chin. J. Struct. Chem. 2020, 39, 2068–2076.

    11. [11]

      Cheng, L.; Zhang, D. N.; Liao, Y. L.; Fan, J. J.; Xiang, Q. J. Structural engineering of 3D hierarchical Cd0.8Zn0.2S for selective photocatalytic CO2 reduction. Chin. J. Catal. 2021, 42, 131–140.  doi: 10.1016/S1872-2067(20)63623-3

    12. [12]

      Ran, J.; Jaroniec, M.; Qiao, S. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.  doi: 10.1002/adma.201704649

    13. [13]

      Wang, S.; Guan, B. Y.; Lou, X. W. Rationally designed hierarchical N-doped carbon@NiCo2O4 double-shelled nanoboxes for enhanced visible light CO2 reduction. Energy Environ. Sci. 2018, 11, 306–310.  doi: 10.1039/C7EE02934A

    14. [14]

      Sakakura, T.; Choi, J. C.; Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 2007, 107, 2365–2387.  doi: 10.1021/cr068357u

    15. [15]

      Chang, X.; Wang, T.; Gong, J. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196.  doi: 10.1039/C6EE00383D

    16. [16]

      Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638.  doi: 10.1038/277637a0

    17. [17]

      Xiong, Z.; Lei, Z.; Li, Y.; Dong, L.; Zhao, Y.; Zhang, J. A review on modification of facet-engineered TiO2 for photocatalytic CO2 reduction. J. Photochem. Photobiol., C 2018, 36, 24–47.  doi: 10.1016/j.jphotochemrev.2018.07.002

    18. [18]

      Jiang, M.; Huang, K.; Liu, J.; Wang, D.; Wang, Y.; Wang, X.; Li, Z.; Wang, X.; Geng, Z.; Hou, X.; Feng, S. Magnetic-field-regulated TiO2 {100} facets: a strategy for C–C coupling in CO2 photocatalytic conversion. Chem 2020, 6, 2335–2346.  doi: 10.1016/j.chempr.2020.06.033

    19. [19]

      Wang, L.; Tan, H.; Zhang, L.; Cheng, B.; Yu, J. In-situ growth of few-layer graphene on ZnO with intimate interfacial contact for enhanced photocatalytic CO2 reduction activity. Chem. Eng. J. 2021, 411, 128501.  doi: 10.1016/j.cej.2021.128501

    20. [20]

      Geng, Z.; Kong, X.; Chen, W.; Su, H.; Liu, Y.; Cai, F.; Wang, G.; Zeng, J. Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angew. Chem. Int. Ed. 2018, 57, 6054–6059.  doi: 10.1002/anie.201711255

    21. [21]

      Liang, M.; Borjigin, T.; Zhang, Y.; Liu, B.; Liu, H.; Guo, H. Controlled assemble of hollow heterostructured g-C3N4@CeO2 with rich oxygen vacancies for enhanced photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2019, 243, 566–575.  doi: 10.1016/j.apcatb.2018.11.010

    22. [22]

      Wang, M.; Shen, M.; Jin, X.; Tian, J.; Shao, Y.; Zhang, L.; Li, Y.; Shi, J. Exploring the enhancement effects of hetero-metal doping in CeO2 on CO2 photocatalytic reduction performance. Chem. Eng. J. 2022, 427, 130987.  doi: 10.1016/j.cej.2021.130987

    23. [23]

      Jiang, Y.; Chen, H.; Li, J.; Liao, J.; Zhang, H.; Wang, X.; Kuang, D. Z-Scheme 2D/2D heterojunction of CsPbBr3/Bi2WO6 for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2020, 30, 2004293.  doi: 10.1002/adfm.202004293

    24. [24]

      Liu, S.; Wang, C.; Wu, J.; Tian, B.; Sun, Y.; Lv, Y.; Mu, Z.; Sun, Y.; Li, X.; Wang, F.; Wang, Y.; Tang, L.; Wang, P.; Li, Y.; Ding, M. Efficient CO2 electroreduction with a monolayer Bi2WO6 through a metallic intermediate surface state. ACS Catal. 2021, 11, 12476–12484.  doi: 10.1021/acscatal.1c02495

    25. [25]

      Yamamoto, M.; Yoshida, T.; Yamamoto, N.; Nomoto, T.; Yamamoto, Y.; Yagi, S.; Yoshida, H. Photocatalytic reduction of CO2 with water promoted by Ag clusters in Ag/Ga2O3 photocatalysts. J. Mater. Chem. A 2015, 3, 16810–16816.  doi: 10.1039/C5TA04815J

    26. [26]

      Akatsuka, M.; Kawaguchi, Y.; Itoh, R.; Ozawa, A.; Yamamoto, M.; Tanabe, T.; Yoshida, T. Preparation of Ga2O3 photocatalyst highly active for CO2 reduction with water without cocatalyst. Appl. Catal. B: Environ. 2020, 262, 118247.  doi: 10.1016/j.apcatb.2019.118247

    27. [27]

      Huang, Z.; Teramura, K.; Asakura, H.; Hosokawa, S.; Tanaka, T. CO2 capture, storage, and conversion using a praseodymium-modified Ga2O3 photocatalyst. J. Mater. Chem. A 2017, 5, 19351–19357.  doi: 10.1039/C7TA04918H

    28. [28]

      Wang, F.; Hou, T.; Zhao, X.; Yao, W.; Fang, R.; Shen, K.; Li, Y. Ordered macroporous carbonous frameworks implanted with CdS quantum dots for efficient photocatalytic CO2 reduction. Adv. Mater. 2021, 33, 2102690.  doi: 10.1002/adma.202102690

    29. [29]

      Su, B.; Huang, L.; Xiong, Z.; Yang, Y.; Hou, Y.; Ding, Z.; Wang, S. Branch-like ZnS-DETA/CdS hierarchical heterostructures as an efficient photocatalyst for visible light CO2 reduction. J. Mater. Chem. A 2019, 7, 26877–26883.  doi: 10.1039/C9TA10470D

    30. [30]

      Wang, S.; Guan, B. Y.; Lou, X. W. D. Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction. J. Am. Chem. Soc. 2018, 140, 5037–5040.  doi: 10.1021/jacs.8b02200

    31. [31]

      Wang, S.; Guan, B. Y.; Wang, X.; Lou, X. W. D. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 15145–15148.  doi: 10.1021/jacs.8b07721

    32. [32]

      He, Y.; Rao, H.; Song, K.; Li, J.; Yu, Y.; Lou, Y.; Li, C.; Han, Y.; Shi, Z.; Feng, S. 3D Hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction. Adv. Funct. Mater. 2019, 29, 1905153.  doi: 10.1002/adfm.201905153

    33. [33]

      Chen, K.; Wang, X.; Li, Q.; Feng, Y.; Chen, F.; Yu, Y. Spatial distribution of ZnIn2S4 nanosheets on g-C3N4 microtubes promotes photocatalytic CO2 reduction. Chem. Eng. J. 2021, 418, 129476.  doi: 10.1016/j.cej.2021.129476

    34. [34]

      Mao, S.; Shi, J.; Sun, G.; Ma, D.; He, C.; Pu, Z.; Song, K.; Cheng, Y. Au nanodots@thiol-UiO66@ZnIn2S4 nanosheets with significantly enhanced visible-light photocatalytic H2 evolution: the effect of different Au positions on the transfer of electron-hole pairs. Appl. Catal. B: Environ. 2021, 282, 119550.  doi: 10.1016/j.apcatb.2020.119550

    35. [35]

      Chen, Y.; Huang, R.; Chen, D.; Wang, Y.; Liu, W.; Li, X.; Li, Z. Exploring the different photocatalytic performance for dye degradations over hexagonal ZnIn2S4 microspheres and cubic ZnIn2S4 nanoparticles. ACS Appl. Mater. Interfaces 2012, 4, 2273–2279.  doi: 10.1021/am300272f

    36. [36]

      Wang, L.; Cheng, B.; Zhang, L.; Yu, J. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, 2103447.  doi: 10.1002/smll.202103447

    37. [37]

      Xu, F.; Zhang, L.; Cheng, B.; Yu, J. Direct Z-scheme TiO2/NiS core-shell hybrid nanofibers with enhanced photocatalytic H2-production activity. ACS Sustain. Chem. Eng. 2018, 6, 12291–12298.  doi: 10.1021/acssuschemeng.8b02710

    38. [38]

      Chen, B.; Shen, Y.; Wei, J.; Xiong, R.; Shi, J. Research progress on g-C3N4-based Z-scheme photocatalytic system. Acta Phys. -Chim. Sin. 2016, 32, 1371–1382.  doi: 10.3866/PKU.WHXB201603155

    39. [39]

      Yang, X.; Xue, H.; Xu, J.; Huang, X.; Zhang, J.; Tang, Y.; Ng, T. W.; Kwong, H.; Meng, X.; Lee, C. Synthesis of porous ZnS: Ag2S nanosheets by ion exchange for photocatalytic H2 generation. ACS Appl. Mater. Interaces 2014, 6, 9078–9084.  doi: 10.1021/am5020953

    40. [40]

      Yu, H.; Dong, Q.; Jiao, Z.; Wang, T.; Ma, J.; Lu, G.; Bi, Y. Ion exchange synthesis of PAN/Ag3PO4 core-shell nanofibers with enhanced photocatalytic properties. J. Mater. Chem. A 2014, 2, 1668–1671.  doi: 10.1039/C3TA14447J

    41. [41]

      Wang, X.; Wang, X.; Huang, J.; Li, S.; Meng, A.; Li, Z. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat. Commun. 2021, 12, 4112.  doi: 10.1038/s41467-021-24511-z

    42. [42]

      Wang, S.; Zhu, B.; Liu, M.; Zhang, L.; Yu, J.; Zhou, M. Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl. Catal. B: Environ. 2019, 243, 19–26.  doi: 10.1016/j.apcatb.2018.10.019

    43. [43]

      Li, B.; Wang, W.; Zhao, J.; Wang, Z.; Su, B.; Hou, Y.; Ding, Z.; Ong, W. J.; Wang, S. All-solid-state direct Z-scheme NiTiO3/Cd0.5Zn0.5S heterostructures for photocatalytic hydrogen evolution with visible light. J. Mater. Chem. A 2021, 9, 10270–10276.  doi: 10.1039/D1TA01220G

    44. [44]

      Li, A.; Pang, H.; Li, P.; Zhang, N.; Chen, G.; Meng, X.; Liu, M.; Liu, X.; Ma, R.; Ye, J. Insights into the critical dual-effect of acid treatment on ZnxCd1-xS for enhanced photocatalytic production of syngas under visible light. Appl. Catal. B: Environ. 2021, 288, 119976.  doi: 10.1016/j.apcatb.2021.119976

    45. [45]

      Zhang, G.; Sun, J.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Hierarchical core-shell heterostructures of ZnIn2S4 nanosheets on electrospun In2O3 nanofibers with highly enhanced photocatalytic activity. J. Hazard. Mater. 2020, 398, 122889.  doi: 10.1016/j.jhazmat.2020.122889

    46. [46]

      Kuang, P.; Zhang, L.; Cheng, B.; Yu, J. Enhanced charge transfer kinetics of Fe2O3/CdS composite nanorod arrays using cobalt-phosphate as cocatalyst. Appl. Catal. B: Environ. 2017, 218, 570–580.  doi: 10.1016/j.apcatb.2017.07.002

    47. [47]

      You, Y.; Wang, S.; Xiao, K.; Ma, T.; Zhang, Y.; Huang, H. Z-Scheme g-C3N4/Bi4NbO8Cl heterojunction for enhanced photocatalytic hydrogen production. ACS Sustainable Chem. Eng. 2018, 6, 16219–16227.  doi: 10.1021/acssuschemeng.8b03075

    48. [48]

      Su, Y.; Ao, D.; Liu, H.; Wang, Y. MOF-derived yolk-shell CdS microcubes with enhanced visible-light photocatalytic activity and stability for hydrogen evolution. J. Mater. Chem. A 2017, 5, 8680–8689.  doi: 10.1039/C7TA00855D

    49. [49]

      Zhou, M.; Wang, S.; Yang, P.; Luo, Z.; Yuan, R.; Asiri, A. M.; Wakeel, M.; Wang, X. Layered heterostructures of ultrathin polymeric carbon nitride and ZnIn2S4 nanosheets for photocatalytic CO2 reduction. Chem. Eur. J. 2018, 24, 18529–18534.  doi: 10.1002/chem.201803250

    50. [50]

      Li, X.; Jiang, H.; Ma, C.; Zhu, Z.; Song, X.; Li, X.; Wang, H.; Huo, P.; Chen, X. Construction of a multi-interfacial-electron transfer scheme for efficient CO2 photoreduction: a case study using CdIn2S4 micro-flower spheres modified with Au nanoparticles and reduced graphene oxide. J. Mater. Chem. A 2020, 8, 18707–18714.  doi: 10.1039/D0TA06602H

    51. [51]

      Wang, S.; Yao, W.; Lin, J.; Ding, Z.; Wang, X. Cobalt imidazolate metal-organic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem. Int. Ed. 2014, 53, 1034–1038.  doi: 10.1002/anie.201309426

    52. [52]

      Lin, X.; Xie, Z.; Su, B.; Zheng, M.; Dai, W.; Hou, Y.; Ding, Z.; Lin, W.; Fang, Y.; Wang, S. Well-defined Co9S8 cages enable the separation of photoexcited charges to promote visible-light CO2 reduction. Nanoscale 2021, DOI: 10.1039/D1031NR04812K.  doi: 10.1039/D1031NR04812K

    53. [53]

      Zhao, Z.; Shi, C.; Shen, Q.; Li, W.; Men, D.; Xu, B.; Sun, Y.; Li, C. Hierarchical Z-scheme Fe2O3@ZnIn2S4 core-shell heterostructures with enhanced adsorption capacity enabling significantly improved photocatalytic CO2 reduction. CrystEngComm 2020, 22, 8221–8227.  doi: 10.1039/D0CE01462A

    54. [54]

      Zhu, K.; Ou-Yang, J.; Zeng, Q.; Meng, S.; Teng, W.; Song, Y.; Tang, S.; Cui, Y. Fabrication of hierarchical ZnIn2S4@CNO nanosheets for photocatalytic hydrogen production and CO2 photoreduction. Chin. J. Catal. 2020, 41, 454–463.  doi: 10.1016/S1872-2067(19)63494-7

    55. [55]

      Wang, S.; Guan, B. Y.; Lu, Y.; Lou, X. W. D. Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction. J. Am. Chem. Soc. 2017, 139, 17305–17308.  doi: 10.1021/jacs.7b10733

    56. [56]

      Vu, N. N.; Kaliaguine, S.; Do, T. O. Synthesis of the g-C3N4/CdS nanocomposite with a chemically bonded interface for enhanced sunlight-driven CO2 photoreduction. ACS Appl. Energy Mater. 2020, 3, 6422–6433.  doi: 10.1021/acsaem.0c00656

    57. [57]

      Wang, R.; Yang, P.; Wang, S.; Wang, X. Distorted carbon nitride nanosheets with activated n → π* transition and preferred textural properties for photocatalytic CO2 reduction. J. Catal. 2021, 402, 166–176.  doi: 10.1016/j.jcat.2021.08.025

    58. [58]

      Wang, S.; Hou, Y.; Wang, X. Development of a stable MnCo2O4 cocatalyst for photocatalytic CO2 reduction with visible light. ACS Appl. Mater. Interfaces 2015, 7, 4327–4335.  doi: 10.1021/am508766s

    59. [59]

      Niu, P.; Pan, Z.; Wang, S.; Wang, X. Tuning crystallinity and surface hydrophobicity of a cobalt phosphide cocatalyst to boost CO2 photoreduction performance. ChemSusChem 2021, 14, 1302–1307.  doi: 10.1002/cssc.202002755

    60. [60]

      Wang, Y.; Wang, S.; Lou, X. W. Dispersed nickel cobalt oxyphosphide nanoparticles confined in multichannel hollow carbon fibers for photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 2019, 58, 17236–17240.  doi: 10.1002/anie.201909707

    61. [61]

      Yang, M.; Xu, Y.; Lu, W.; Zeng, K.; Zhu, H.; Xu, Q.; Ho, G. W. Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids. Nat. Commun. 2017, 8, 14224.  doi: 10.1038/ncomms14224

    62. [62]

      Xu, J.; Sun, C.; Wang, Z.; Hou, Y.; Ding, Z.; Wang, S. Perovskite oxide LaNiO3 nanoparticles for boosting H2 evolution over commercial CdS with visible light. Chem. Eur. J. 2018, 24, 18512–18517.  doi: 10.1002/chem.201802920

    63. [63]

      He, F.; Zhu, B.; Cheng, B.; Yu, J.; Ho, W.; Macyk, W. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B: Environ. 2020, 272, 119006.  doi: 10.1016/j.apcatb.2020.119006

    64. [64]

      Wu, Y.; Xie, N.; Li, X.; Fu, Z.; Wu, X.; Zhu, Q. MOF-derived hierarchical hollow NiRu-C nanohybrid for efficient hydrogen evolution reaction. Chin. J. Struct. Chem. 2021, 40, 1346–1356.

    65. [65]

      Xiong, Z.; Huang, L.; Peng, J.; Hou, Y.; Ding, Z.; Wang, S. Spinel-type mixed metal sulfide NiCo2S4 for efficient photocatalytic reduction of CO2 with visible light. ChemCatChem 2019, 11, 5513–5518.  doi: 10.1002/cctc.201901379

    66. [66]

      Deng, H.; Fei, X.; Yang, Y.; Fan, J.; Yu, J.; Cheng, B.; Zhang, L. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity. Chem. Eng. J. 2021, 409, 127377.  doi: 10.1016/j.cej.2020.127377

    67. [67]

      Mahadadalkar, M. A.; Gosavi, S. W.; Kale, B. B. Interstitial charge transfer pathways in a TiO2/CdIn2S4 heterojunction photocatalyst for direct conversion of sunlight into fuel. J. Mater. Chem. A 2018, 6, 16064–16073.  doi: 10.1039/C8TA03398F

    68. [68]

      Zuo, G.; Wang, Y.; Teo, W. L.; Xian, Q.; Zhao, Y. Direct Z-scheme TiO2-ZnIn2S4 nanoflowers for cocatalyst-free photocatalytic water splitting. Appl. Catal. B: Environ. 2021, 291, 120126.  doi: 10.1016/j.apcatb.2021.120126

    69. [69]

      Tang, S.; Yin, X.; Wang, G.; Lu, X.; Lu, T. Single titanium-oxide species implanted in 2D g-C3N4 matrix as a highly efficient visible-light CO2 reduction photocatalyst. Nano Res. 2019, 12, 457–462.  doi: 10.1007/s12274-018-2240-4

  • 加载中
    1. [1]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    2. [2]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    3. [3]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    4. [4]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    5. [5]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

    6. [6]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    7. [7]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    8. [8]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    9. [9]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    10. [10]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    11. [11]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    12. [12]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    13. [13]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    14. [14]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    15. [15]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    16. [16]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    17. [17]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    18. [18]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    19. [19]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    20. [20]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

Metrics
  • PDF Downloads(6)
  • Abstract views(435)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return