Citation: Xiao-Bo YU, Zhao CHEN, Yuan-Jie MA, Ling LI, Wen-Ting CHANG, Bo LI, Cheng-Hui ZENG. Synthesis of Highly Luminescent LnMOFs through Structural Regulation[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220327. doi: 10.14102/j.cnki.0254-5861.2021-0013 shu

Synthesis of Highly Luminescent LnMOFs through Structural Regulation

  • Corresponding author: Cheng-Hui ZENG, chenghuizeng@jxnu.edu.cn
  • Received Date: 19 November 2021
    Accepted Date: 25 November 2021

    Fund Project: the National Natural Science Foundation of China 51962008Natural Science Foundation of Jiangxi Province 20202BABL203018

Figures(5)

  • Two series of three dimensional (3D) lanthanide metal-organic frameworks (LnMOFs) of [Ln(tftpa)1.5(phen)(H2O)]n (Ln = Sm 1a, Eu 1b, Tb 1c, Dy 1d, H2tftpa = tetrafluoroterephthalic acid, phen = 1, 10-phenanthrolin) and [Ln(tftpa)1.5(bpy)(H2O)]n (Ln = Sm 2a, Eu 2b, Tb 2c, Dy 2d, bpy = 2, 2΄-bipyridine) are obtained by structural regulation. Results reveal that the 3D LnMOFs show high water- and thermal-stability. Interestingly, through selecting the perfluorinated ligand, and using bpy as an auxiliary ligand to hold back the solvents near to the lanthanide ions, 2b, and 2c show high luminescence quantum yield (QY) of 74.50% and 60.03%, respectively. In order to further improve the luminescence QY, the auxiliary ligand of phen with larger conjugation and more rigid structure is synthesized to replace bpy, and fortunately, higher luminescence QY of 80.73% (1b) and 75.17% (1c) are realized.
  • 加载中
    1. [1]

      (a) Ghasempour, H.; Wang, K. Y.; Powell, J. A.; ZareKarizi, F.; Lv, X. L.; Morsali, A.; Zhou, H. C. Metal-organic frameworks based on multicarboxylate linkers. Coord. Chem. Rev. 2021, 426, 10.1016/j. ccr. 2020.213542. (b) Wang, X. T.; Wei, W.; Zhang, K.; Du, S. W. Detection of diethyl ether by a europium MOF through fluorescence enhancement. . Chin. J. Struct. Chem. 2021, 40, 369–375.

    2. [2]

      Liao, P. Q.; Huang, N. Y.; Zhang, W. X.; Zhang, J. P.; Chen, X. M. Controlling guest conformation for efficient purification of butadiene. Science 2017, 356, 1193–1196.  doi: 10.1126/science.aam7232

    3. [3]

      (a) Li, C.; Zeng, C.; Chen, Z.; Jiang, Y.; Yao, H.; Yang, Y.; Wong, W. T. Luminescent lanthanide metal-organic framework test strip for immediate detection of tetracycline antibiotics in water. J. Hazard. Mater. 2020, 384, 121498. (b) Liu, M.; Li, H.; Bai, L.; Zheng, K.; Zhao, Z.; Chen, Z.; Ng, S. W.; Ding, L.; Zeng, C. Real-time and visual sensing devices based on pH-control assembled lanthanide-barium nano-cluster. J. Hazard. Mater. 2021, 413, 125291–125291. (c) Liu, M.; Li, Z.; Xiong, J.; Jiang, Y.; Tang, T.; Qiu, J.; Yao, J.; Ng, S. W.; Zeng, C. Structure regulation for ultra-high luminescence quantum yield lanthanide complex and simultaneous detection of cancer marker and ferrous ion. . J. Rare Earths 2021, 39, 1194–1203.

    4. [4]

      Ma, Y. J.; Hu, J. X.; Han, S. D.; Pan, J.; Li, J. H.; Wang, G. M. Manipulating on/off single-molecule magnet behavior in a Dy(III)-based photochromic complex. J. Am. Chem. Soc. 2020, 142, 2682–2689.  doi: 10.1021/jacs.9b13461

    5. [5]

      Zhang, Q.; Wei, W. J.; Li, Q.; Pan, J.; Han, S. D.; Hu, J. X.; Wang, G. M. Light enhanced proton conductivity in a terbium phosphonate photochromic chain complex. Sci. China Chem. 2021, 10.1007/s11426-11021-19976-11427.

    6. [6]

      Muldoon, P. F.; Collet, G.; Eliseeva, S. V.; Luo, T. Y.; Petoud, S.; Rosi, N. L. Ship-in-a-bottle preparation of long wavelength molecular antennae in lanthanide metal-organic frameworks for biological imaging. J. Am. Chem. Soc. 2020, 142, 8776–8781.  doi: 10.1021/jacs.0c01426

    7. [7]

      (a) Cao, C. C.; Chen, C. X.; Wei, Z. W.; Qiu, Q. F.; Zhu, N. X.; Xiong, Y. Y.; Jiang, J. J.; Wang, D.; Su, C. Y. Catalysis through dynamic spacer installation of multivariate functionalities in metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 2589–2593. (b) Dhakshinamoorth, A.; Asiri, A. M.; Garcia, H. 2D metal-organic frameworks as multifunctional materials in heterogeneous catalysis and electro/photocatalysis. Adv. Mater. 2019, 31, 1900617. (c) Zhang, X. D.; Huang, L. R.; Wu, J. X.; Gu, Z. Y. Enhancing selectivity through decrypting the uncoordinated zirconium sites in MOF electrocatalysts. . Chem. Commun. 2021, 57, 5191–5194.

    8. [8]

      (a) Chen, X.; Xu, Y.; Li, H. Lanthanide organic/inorganic hybrid systems: efficient sensors for fluorescence detection. Dyes Pigments 2020, 178, 108386. (b) Ren, Y. W.; Hu, H. N.; Zhang, J.; Zhuang, X. J.; Li, D. P.; Li, Y. X. Characterization and DNA interaction of lanthanide complexes based on thiourea ligand. . Chin. J. Struct. Chem. 2021, 40, 47–54.

    9. [9]

      Chen, Z. B.; Chen, B. B.; Cheng, J. W. Luminescent lanthanide-titanium-organic compound constructed by tetra-nuclear Ln-Ti building units and diphenylglycolic acid. . Chin. J. Struct. Chem. 2021, 40, 182–186.

    10. [10]

      (a) Yan, B.; Liang, R.; Zheng, K.; Li, R.; Ma, P.; Wang, J.; Niu, J. Multinuclear lanthanide-implanted tetrameric dawson-type phosphotungstates with switchable luminescence behaviors induced by fast photochromism. . Inorg. Chem. 2021, 60, 8164–8172. (b) Fordham, S.; Wang, X.; Bosch, M.; Zhou, H. C. In Lanthanide Metal-Organic Frameworks. Cheng, P., Ed. 2015, 163, pp 1–27.

    11. [11]

      Lima, N. B. D.; Goncalves, S. M. C.; Junior, S. A.; Simas, A. M. A comprehensive strategy to boost the quantum yield of luminescence of europium complexes. . Sci. Rep. 2013, 3, 2395.  doi: 10.1038/srep02395

    12. [12]

      Hirai, Y.; Nakanishi, T.; Kitagawa, Y.; Fushimi, K.; Seki, T.; Ito, H.; Hasegawa, Y. Triboluminescence of lanthanide coordination polymers with face-to-face arranged substituents. . Angew. Chem. Int. Ed. 2017, 56, 7171–7175.  doi: 10.1002/anie.201703638

    13. [13]

      (a) Winkless, L.; Tan, R. H. C.; Zheng, Y.; Motevalli, M.; Wyatt, P. B.; Gillin, W. P. Quenching of Er(III) luminescence by ligand C–H vibrations: implications for the use of erbium complexes in telecommunications. . Appl. Phys. Lett. 2006, 89, 111115. (b) Armelao, L.; Quici, S.; Barigelletti, F.; Accorsi, G.; Bottaro, G.; Cavazzini, M.; Tondello, E. Design of luminescent lanthanide complexes: from molecules to highly efficient photo-emitting materials. . Coord. Chem. Rev. 2010, 254, 487–505.

    14. [14]

      Lian, X.; Zhao, D.; Cui, Y.; Yang, Y.; Qian, G. A near infrared luminescent metal-organic framework for temperature sensing in the physiological range. . Chem. Commun. 2015, 51, 17676–17679.  doi: 10.1039/C5CC07532G

    15. [15]

      Sabbatini, N.; Guardigli, M.; Lehn, J. M. Luminescent lanthanide complexes as photochemical supramolecular devices. Coord. Chem. Rev. 1993, 123, 201–228.  doi: 10.1016/0010-8545(93)85056-A

    16. [16]

      Moudam, O.; Rowan, B. C.; Alamiry, M.; Richardson, P.; Richards, B. S.; Jones, A. C.; Robertson, N. Europium complexes with high total photoluminescence quantum yields in solution and in PMMA. . Chem. Commun. 2009, 6649–6651.

    17. [17]

      Zou, M.; Xia, X.; Jiang, Y.; Peng, J.; Jia, Z.; Wang, X.; Li, F. Strengthened perovskite/fullerene interface enhances efficiency and stability of inverted planar perovskite solar cells via a tetrafluoroterephthalic acid interlayer. . Acs Appl. Mater. Interfaces 2019, 11, 33515–33524.  doi: 10.1021/acsami.9b12961

    18. [18]

      Yu, H. H.; Chi, J. Q.; Su, Z. M.; Li, X.; Sun, J.; Zhou, C.; Hu, X. L.; Liu, Q. A water-stable terbium metal-organic framework with functionalized ligands for the detection of Fe3+ and Cr2O72− ions in water and picric acid in seawater. . CrystEngComm 2020, 22, 3638–3643.  doi: 10.1039/D0CE00430H

    19. [19]

      Yu, H.; Liu, Q.; Li, J.; Su, Z. M.; Li, X.; Wang, X.; Sun, J.; Zhou, C.; Hu, X. A dual-emitting mixed-lanthanide MOF with high water-stability for ratiometric fluorescence sensing of Fe3+ and ascorbic acid. . J. Mater. Chem. C 2021, 9, 562–568.

    20. [20]

      (a) Xu, Y.; Li, X. X.; Wang, H. X.; Liu, H. R.; Chen, Q.; Dou, Q. Synthesis, crystal structure and luminescence of one-dimensional homochiral terbium(III) coordination polymers. . Chin. J. Struct. Chem. 2020, 39, 1044–1050. (b) Wang, Z. Q.; Pan, X.; Lu, Y. L.; Li, Y. Y.; Yang, Y. P.; Xin, X. L.; Jin, Q. H. Crystal structures, terahertz spectra and dye adsorption performance of three lanthanide-bisphosphonate complexes containing keggin polyoxometalates. Chin. J. Struct. Chem. 2021, 40, 615–624.

    21. [21]

      Korostei, Y. S.; Pushkarev, V. E.; Tolbin, A. Y.; Dzuban, A. V.; Chernyak, A. V.; Konev, D. V.; Medvedeva, T. O.; Talantsev, A. D.; Sanina, N. A.; Tomilova, L. G. Sandwich quadruple-decker binuclear lanthanide(III) complexes based on clamshell-type phthalocyanine ligand: synthesis and physicochemical studies. Dyes Pigments 2019, 170, 107648.

    22. [22]

      (a) He, X.; Liu, Y.; Lv, Y.; Dong, Y.; Hu, G.; Zhou, S.; Xu, Y. L- and D-LnZn(IN)3(C2H4O2)n (Ln = Eu, Sm, and Gd): chiral enantiomerically 3D 3d–4f coordination polymers constructed by interesting butterfly-like building units and -[Ln-O-Zn]n-helices. . Inorg. Chem. 2016, 55, 2048–2054. (b) Kumar, M.; Kariem, M.; Sheikh, H. N.; Frontera, A.; Seth, S. K.; Jassal, A. K. A series of 3D lanthanide coordination polymers decorated with a rigid 3, 5-pyridinedicarboxylic acid linker: syntheses, structural diversity, DFT study, Hirshfeld surface analysis, luminescence and magnetic properties. . Dalton Trans. 2018, 47, 12318–12336.

    23. [23]

      (a) Zheng, K.; Liu, Z.; Jiang, Y.; Guo, P.; Li, H.; Zeng, C.; Ng, S. W.; Zhong, S. Ultrahigh luminescence quantum yield lanthanide coordination polymer as a multifunctional sensor. . Dalton Trans. 2018, 47, 17432–17440. (b) Qian, X. Y.; Zhang, J. H.; Zhou, T. H.; Mao, J. G. Syntheses, crystal structures and luminescent properties of new lanthanide(III) organoarsonates. Dalton Trans. 2012, 41, 1229–1236. (c) Kumar, M.; Li, L. Q.; Zaręba, J. K.; Tashi, L.; Sahoo, S. C.; Nyk, M.; Liu, S. J.; Sheikh, H. N. Lanthanide contraction in action: structural variations in 13 lanthanide(III) thiophene-2, 5-dicarboxylate coordination polymers (Ln = La–Lu, except Pm and Tm) featuring magnetocaloric effect, slow magnetic relaxation, and luminescence-lifetime-based thermometry. . Cryst. Growth. Des. 2020, 20, 6430–6452. (d) Kumar, M.; Qiu, C. Q.; Zaręba, J. K.; Frontera, A.; Jassal, A. K.; Sahoo, S. C.; Liu, S. J.; Sheikh, H. N. Magnetic, luminescence, topological and theoretical studies of structurally diverse supramolecular lanthanide coordination polymers with flexible glutaric acid as a linker. . New J. Chem. 2019, 43, 14546–14564.

    24. [24]

      (a) Zheng, K.; Liu, Z. Q.; Huang, Y.; Chen, F.; Zeng, C. H.; Zhong, S.; Ng, S. W. Highly luminescent Ln-MOFs based on 1, 3-adamantanediacetic acid as bifunctional sensor. . Sens. Actuators B Chem. 2018, 257, 705–713. (b) Tang, T.; Liu, M.; Chen, Z.; Wang, X.; Lai, C.; Ding, L.; Zeng, C. Highly sensitive luminescent lanthanide metal-organic framework sensor for L-kynurenine. . J. Rare Earths 2021, 10.1016/j. jre. 2021.1002. 1008. (c) Yang, Y. Q.; Tuo, L. Y.; Li, W. Synthesis, structure and properties of a new terbium(III) complex Tb2(C15H11O3)6(2, 2'-bipy)2. . Chin. J. Struct. Chem. 2020, 39, 1331–1336. (d) Yang, Y. Q.; Kuang, Y. F.; Zhu, X. M. Synthesis and fluorescent and magnetic properties of a new europium complex Eu(C20H14O3N)3(2, 2'-bipy)(H2O)center dot H2O. . . Chin. J. Struct. Chem. 2021, 40, 507–511. (e) Kumar, M.; Wu, L. H.; Kariem, M.; Franconetti, A.; Sheikh, H. N.; Liu, S. J.; Sahoo, S. C.; Frontera, A. A series of lanthanide-based metal-organic frameworks derived from furan-2, 5-dicarboxylate and glutarate: structure-corroborated density functional theory study, magnetocaloric effect, slow relaxation of magnetization, and luminescent properties. . Inorg. Chem. 2019, 58, 7760–7774.

    25. [25]

      Li, M.; Takei, T.; Zhu, Q.; Kim, B. N.; Li, J. G. Morphology tailoring of ZnWO4 crystallites/architectures and photoluminescence of the doped RE3+ ions (RE = Sm, Eu, Tb, and Dy). Inorg. Chem. 2019, 58, 9432–9442.

    26. [26]

      Aquino, L. E. D. N.; Barbosa, G. A.; Ramos, J. D. L.; Giese, S. O. K.; Santana, F. S.; Hughes, D. L.; Nunes, G. G.; Fu, L.; Fang, M.; Poneti, G.; Carneiro Neto, A. N.; Moura Jr, R. T.; Ferreira, R. A. S.; Carlos, L. D.; Macedo, A. G.; Soares, J. F. Seven-coordinate Tb3+ complexes with 90% quantum yields: high-performance examples of combined singlet- and triplet-to-Tb3+ energy-transfer pathways. . Inorg. Chem. 2021, 60, 893–908.

    27. [27]

      Zeng, C. H.; Meng, X. T.; Xu, S. S.; Han, L. J.; Zhong, S.; Jia, M. Y. A polymorphic lanthanide complex as selective Co2+ sensor and luminescent timer. . . Sens. Actuators B Chem. 2015, 221, 127–135.

  • 加载中
    1. [1]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    2. [2]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    3. [3]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    4. [4]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    5. [5]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    6. [6]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    7. [7]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    8. [8]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    9. [9]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    10. [10]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    11. [11]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    12. [12]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    13. [13]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    14. [14]

      Shuaiwen LiZihui ChenFeng YangWanqing Yue . The age of vanadium-based nanozymes: Synthesis, catalytic mechanisms, regulation and biomedical applications. Chinese Chemical Letters, 2024, 35(4): 108793-. doi: 10.1016/j.cclet.2023.108793

    15. [15]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    16. [16]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    17. [17]

      Bohan ZhangBingzhe WangGuichuan XingZikang TangSongnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358

    18. [18]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    19. [19]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    20. [20]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

Metrics
  • PDF Downloads(4)
  • Abstract views(493)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return