Citation: Hui-Chao GUAN, Xiao-Tong SONG, Gui-Bao LIU, Shu-Mei YUE. Syntheses, Crystal Structures and DNA-Binding Properties of Zn(II) and Mn(II) Complexes Based on Imidazole Derivatives and Carboxylic Acid[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220326. doi: 10.14102/j.cnki.0254-5861.2011-3363 shu

Syntheses, Crystal Structures and DNA-Binding Properties of Zn(II) and Mn(II) Complexes Based on Imidazole Derivatives and Carboxylic Acid

  • Corresponding author: Shu-Mei YUE, 1620520613@qq.com
  • Received Date: 16 September 2021
    Accepted Date: 19 October 2021

Figures(14)

  • Complexes [Zn(pbm)(5-hip)3] (1), [Zn(pbm)(5-nip)3] (2), [Mn(pbm)(H3btc)2(H2O)] (3) and [Mn(pbm)(5-nip)3] (4), where H2HIPA = 5-hydroxyisophthalic acid, H2nip = 5-nitroisophthalic acid, H3btc = trimesic acid and pbm (pyridine benzene chelate material) = 2-(2-pyridyl)benzimidazole, were identified via single-crystal XRD analyses. 1, 2 and 4 pertain to the monoclinic space group C2/c, while 3 belongs to the triclinic space group P\begin{document}$ \overline 1 $\end{document}. The interplay of CT-DNA with those complexes was delineated using ultraviolet, fluorescence, and circular dichroism (CD) spectroscopy and viscosity measurements. Complexes 1, 2, 3 and 4 interact with CT-DNA in an electrostatic or grooving mode. We wish to offer a theory-wise foundation for developing anti-tumor medicines.
  • 加载中
    1. [1]

      Gao, J.; Wei, K. J.; Ni, J.; Zhang, J. Z. Anion effect on construction of two Cd(II) coordination polymers with phenylformic acid-imidazole ditopic ligand: hydrothermal synthesis, crystal structure and antimicrobial activity. J. Coord. Chem. 2009, 62, 257–265.  doi: 10.1080/00958970802206777

    2. [2]

      Xu, D. J.; Zhang, C. G.; Liu, J. G. A small Jahn-teller distortion around a Cu(II) atom crystal structure of bis(N, N′-dimethyl-formamide)bis (1, 1, 1, 5, 5, 5-hexafluoro-2, 4-pentanedionato) Co(II). J. Coord. Chem. 2000, 50, 73–78.  doi: 10.1080/00958970008054926

    3. [3]

      Marichev, K. O.; Patil, S. A.; Bugarin, A. Recent advances in the synthesis, structural diversity, and applications of mesoionic 1, 2, 3-triazol-5-ylidene metal complexes. Tetrahedron 2018, 74, 2523–2546.  doi: 10.1016/j.tet.2018.04.013

    4. [4]

      Hong, J. C.; Xiao, M. C. Crystal structures of two- and three-dimensional polymeric complexes assembled by metal pseudohalides and 4-aminobenzoic acid via hydrogen bonds and covalent bonds. Inorg. Chim. Acta 2000, 329, 13–21.
       

    5. [5]

      Chand, B. G.; Ray, U. S.; Mostafa. G.; Cheng, J.; Lu, T. H.; Sinha, C. Difference in bonding behaviour of azide and thiocyanate to Hg(II)-azoimidazoles. Inorg. Chim. Acta 2005, 358, 1927–1933.  doi: 10.1016/j.ica.2004.12.046

    6. [6]

      Mansour, A. M.; Abdel, N. T. Molecular structures of antitumor active Pd(II) and Pt(II) complexes of N, N-donor benzimidazole methyl ester. J. Coord. Chem. 2021, 65, 763–779.
       

    7. [7]

      Pedro, M. T.; Lidervan, P. M.; Regina, C. G. F.; Adelino, V. G. N.; Antonio, E. M.; Regina, H. A. S.; Janaina, G. F. Self-assembly of metallosupramolecules directed by (N–H)2SCN-M (M = Co, Ni), C–H···π and π-π synthons. J. Mol. Struct. 2006, 783, 161–167.  doi: 10.1016/j.molstruc.2005.08.031

    8. [8]

      Nematollah, A.; Adile, A.; Eskandar, A.; Arsalan, P.; Alireza, F.; Saeed, E. 1-[(2-Arylthiazol-4-yl)methyl] azoles as a new class of anticonvulsants: design, synthesis, in vivo, screening, and in silico, drug-like properties. Chem. Biol. Drug Des. 2011, 78, 844–852.  doi: 10.1111/j.1747-0285.2011.01211.x

    9. [9]

      Katarzyna, G.; Henryk, F.; Krzysztof, B. Synthesis of novel 3-cyclohexylpropanoic acid-derived nitrogen heterocyclic compounds and their evaluation for tuberculostatic activity. Bioorg. Med. Chem. 2012, 20, 137–144.  doi: 10.1016/j.bmc.2011.11.020

    10. [10]

      Wu, R. F.; Shi, H. P.; Zhang, J. R.; Chang, F. F. A novel 3D energetic coordination polymer containing Co(II) atoms in a pentanuclear cluster. J. Struct. Chem. 2015, 56, 1136–1142.  doi: 10.1134/S0022476615060177

    11. [11]

      Li, F. W.; Hor, T. S. A. Benzimidazolium-pyrazole-palladium(II) complexes: new and efficient catalysts for suzuki, heck and sonogashira reactions. Adv. Synth. Catal. 2008, 350, 2391–2400.  doi: 10.1002/adsc.200800356

    12. [12]

      Chen, J. M.; Li, S.; Lu, T. B. Pharmaceutical cocrystals of ribavirin with reduced release rates. Cryst. Growth Des. 2014, 14, 6399–6408.  doi: 10.1021/cg501247x

    13. [13]

      Xiao, G. Y.; Chi, H. J.; Lu, Y. H.; Dong, Y.; Hu, Z. Z.; Yu, J. L.; Kimura, M. Synthesis and photophysical characterization of orange-emitting iridium(III) complexes containing benzothiazole ligand. Synth. Met. 2012, 162, 497–502.  doi: 10.1016/j.synthmet.2012.01.014

    14. [14]

      Alfaif, M. Y.; Elbehairi, S. E. I.; Hafez, H. S. Spectroscopic exploration of binding of new imidazolium-based palladium(II) saldach complexes with CT-DNA as anticancer agents against HER2/neu overexpression. J. Mol. Struct. 2019, 1191, 118–128.  doi: 10.1016/j.molstruc.2019.04.119

    15. [15]

      Facchinetti, V.; Reis, R. R.; Gomes, C. R. B.; Vasconcelos, T. R. A. Chemistry and biological activities of 1, 3-benzothiazoles. Mini-Rev. Org. Chem. 2012, 9, 44–53.  doi: 10.2174/157019312799079929

    16. [16]

      Weekes, A. A.; Westwell, A. D. 2-Arylbenzothiazole as a privileged scaffold in drug discovery. Curr. Med. Chem. 2009, 16, 2430–2440.  doi: 10.2174/092986709788682137

    17. [17]

      Gamov, G. A.; Zavalishin, M. N.; Sharnin, V. A. Comment on the frequently used method of the metal complex-DNA binding constant determination from UV-Vis data. Goergens. Chem. Abstr. 2019, 206, 160–164.
       

    18. [18]

      Somnath, D.; Alexander, E.; Chandan, G.; Kari, R.; Helge, L. Electronic structure manipulation of (benzothiazole)zinc complexes: synthesis, optical and electrochemical studies of 5-substituted derivatives. Eur. J. Org. Chem. 2011, 6226–6232.
       

    19. [19]

      Hegde, D.; Naik, G. N.; Vadavi, R. S.; Kumar, V. S.; Barretto, D. A.; Gudasi, K. B. Transition metal complexes of N΄-(2-(hydroxyimino) propanoyl) sonicotinohydrazide: synthesis, characterization, DNA interaction and anticancer evaluation. Inorg. Chim. Acta 2017, 461, 301–315.  doi: 10.1016/j.ica.2017.02.034

    20. [20]

      Li, S.; Miao, T. F.; Fu, X. L.; Ma, F.; Gao, H.; Zhang, G. P. Theoretical study on the DNA interaction properties of copper(II) complexes. Comput. Biol. Chem. 2019, 80, 244–248.  doi: 10.1016/j.compbiolchem.2019.03.021

    21. [21]

      Marzieh, A.; Masoud, T. M. In vitro DNA and BSA-binding, cell imaging and anticancer activity against human carcinoma cell lines of mixed ligand copper(II) complexes. Spectrochimi. Acta, Part A 2015, 150, 390–402.  doi: 10.1016/j.saa.2015.05.076

    22. [22]

      Pyle, A. M.; Morii, T.; Barton, J. K. Probing microstructures in double-helical DNA with chiral metal complexes: recognition of changes in base-pair propeller twisting in solution. J. Am. Chem. Soc. 1990, 25, 9432–9434.

    23. [23]

      Sama, F.; Raizada, M.; Ashafaq, M.; Ahamad, M. N.; Shahid, M.; Arif, R.; Shah, N. A.; Saleh, H. A. M. Synthesis, structure and DNA binding properties of a homodinuclear Cu(II) complex: an experimental and theoretical approach. J. Mol. Struct. 2019, 1176, 2283–2289.
       

    24. [24]

      Shana, O. K.; Jacqueline, K. B. Electron transfer between bases in double helical DNA. Science 1999, 283, 375–381.  doi: 10.1126/science.283.5400.375

    25. [25]

      Hou, T. T.; Bian, J. Y.; Yue, X. R.; Yue, S. M.; Ma, J. F. Synthesis, crystal structure, photoluminescence and theoretical studies of a series of copper compounds based on imidazole derivatives. Inorg. Chim. Acta 2013, 394, 15–20.  doi: 10.1016/j.ica.2012.07.020

    26. [26]

      Metcalfe, C.; Thomas, J. A. Kinetically inert transition metal complexes that reversibly bind to DNA chemical society reviews. Chem. Soc. Rev. 2003, 4, 215–224.
       

    27. [27]

      Dewan, J. C. Binding of the antitumor drug cis-diamminedichloroplatinum to crystalline tRNAPhe at 6-. ANG. Resolution. J. Am. Chem. Soc. 1984, 106, 7239–7244.  doi: 10.1021/ja00335a063

    28. [28]

      Hou, T. T.; Yue, S. M.; Yue, X. R.; Ma, J. F. Syntheses, crystal structures, and properties of nickel and cadmium complexes containing imidazole derivatives. J. Coord. Chem. 2012, 65, 22, 3895–3902.

    29. [29]

      Yue, S. M.; Qi, S.; Li, Y. H.; Yang, Y. Syntheses, crystal structures and DNA-binding properties of Zn(II), Ni(II) and Co(II) compounds containing thiazole derivatives. J. Struct. Chem. 2018, 37, 1945–1959.

    30. [30]

      Sharma, S.; Sharma, P. K.; Kumar, N.; Dudhe, R. A review on various heterocyclic moieties and their antitubercular activity. Biomed. Pharmacother. 2011, 65, 244–251.  doi: 10.1016/j.biopha.2011.04.005

    31. [31]

      Pyle, A. M.; Rehmann, J. P.; Meshoyrer, R.; Kumar, C. V.; Turro, N. J. Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. Am. Chem. Soc. 1989, 111, 3051–3058.  doi: 10.1021/ja00190a046

    32. [32]

      Zhang, Y. Y.; Jia, L. M.; Zhou, C. H.; Zhou, X. D. Synthesis of novel fluconazoliums and their evaluation for antibacterial and antifungal activities. J. Eur. Med. Chem. 2011, 46, 4391–4402.  doi: 10.1016/j.ejmech.2011.07.010

    33. [33]

      Tysoe, S. A.; Morgan, R. J.; Baker, A. D.; Strekas, T. S. Spectroscopic investigation of differential binding modes of △- and Ru(bpy)2(ppz)2+ with calf thymus DNA. J. Phys. Chem. 1993, 97, 1707–171.  doi: 10.1021/j100110a038

    34. [34]

      Ding, P. P.; Wang, Y.; Kou, H. Z.; Li, J. F.; Shi, B. X. Synthesis of heterobinuclear Cu(Ⅱ)-Ni(Ⅱ) complex: structure, CT-DNA interaction, hydrolytic function and antibacterial studies. J. Mol. Struct. 2019, 1196, 836–843.  doi: 10.1016/j.molstruc.2019.06.081

    35. [35]

      Satyanarayana, S.; Dabrowiak, J. C.; Chaires, J. B. Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: mode and specificity of binding. Biochemistry 1993, 32, 2573–2584.  doi: 10.1021/bi00061a015

    36. [36]

      Saeidifar, M.; Mirzaei, H.; Nasab, N. A.; Torshizi, H. M. Mononuclear Pd(II) complex as a new therapeutic agent: synthesis, characterization, biological activity, spectral and DNA binding approaches. J. Mol. Struct. 2017, 1148, 339–346.  doi: 10.1016/j.molstruc.2017.06.139

    37. [37]

      Shankaraiah, N.; Jadala, C.; Nekkanti, S.; Senwar, K. R.; Nagesh, N.; Shrivastava, S. Design and synthesis of C3-tethered 1, 2, 3-triazolo-β-carboline derivatives: anticancer activity, DNA-binding ability, viscosity and molecular modeling studies. Bioorg. Chem. 2016, 64, 42–50.
       

    38. [38]

      Kumar, C. V.; Asuncion, E. H. DNA binding studies and site selective fluorescence sensitization of an anthryl probe J. Am. Chem. Soc. 1993, 115, 8547–8553.  doi: 10.1021/ja00072a004

    39. [39]

      Wang, Z. X.; Liu, D. J.; Dong, S. J. Voltammetric and spectroscopic studies on methyl green and cationic lipid bound to calf thymus DNA. Biophys Chem. 2000, 87, 179–184.  doi: 10.1016/S0301-4622(00)00191-5

    40. [40]

      Röcker, C.; Pötzl, M.; Zhang F. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nature Nanotech. 2009, 4, 577–580.  doi: 10.1038/nnano.2009.195

    41. [41]

      Wang, Y. G.; Zhang, Z.; Wang, H.; Liu, H. Y. Phosphorus(V) corrole: DNA binding, photonuclease activity and cytotoxicity toward tumor cells. Bioorg. Chem. 2016, 67, 57–63.
       

  • 加载中
    1. [1]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    2. [2]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    3. [3]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    4. [4]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    5. [5]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    6. [6]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    7. [7]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    8. [8]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    9. [9]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    10. [10]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    11. [11]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    12. [12]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    13. [13]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    14. [14]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    15. [15]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    16. [16]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    17. [17]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    18. [18]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    19. [19]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    20. [20]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

Metrics
  • PDF Downloads(9)
  • Abstract views(1397)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return