Citation: Zi-Hui YANG, Qing-Song LIU, Yue SUN, Xue-Bao SUN, Wen GU. Synthesis, Crystal Structure and Anti-fungal/Anti-oomycete Activity of New Pyrazole-benzene Carboxamide Derivatives[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220325. doi: 10.14102/j.cnki.0254-5861.2011-3360 shu

Synthesis, Crystal Structure and Anti-fungal/Anti-oomycete Activity of New Pyrazole-benzene Carboxamide Derivatives

  • Corresponding author: Wen GU, njguwen@163.com
  • Received Date: 11 September 2021
    Accepted Date: 10 October 2021

    Fund Project: the National Natural Science Foundation of China 31770616the Natural Science Foundation for Colleges and Universities in Jiangsu Province 17KJA220002

Figures(4)

  • Four novel pyrazole-benzene carboxamide derivatives 2a~2d were synthesized and characterized by NMR, HRMS spectral method and X-ray diffraction analysis, and were further conducted for screening the anti-fungal/anti-oomycete activity. Compound 2d crystallizes as monoclinic space group P21/c with a = 42.260(4), b = 5.3751(4), c = 8.0129(9) Å, β = 92.958(10)°, V = 1817.7(3) Å3, Z = 4, Mr = 385.41, Dc = 1.408 Mg/m3, S = 1.087, μ = 0.773 mm-1, F(000) = 808, the final R = 0.0763 and wR = 0.2136 for 2657 observed reflections (I > 2σ(I)). The preliminary antifungal assay indicates that the title compounds show fair to excellent antifungal/anti-oomycete activity toward four plant fungi and two crop oomycetes. Among them, compound 2b exhibits the strongest in vitro anti-B. cinerea effects (EC50 = 1.61 mg/L). In vivo test presents compound 2b displays considerable protective and curative effects to tomato fruits infected by B. cinerea. These results indicate that compound 2b would be potential fungicides leads for further development.
  • 加载中
    1. [1]

      Jain, A.; Sarsaiya, S.; Wu, Q.; Lu, Y.; Shi, J. A review of plant leaf fungal diseases and its environment speciation. Bioengineered 2019, 10, 409–424.  doi: 10.1080/21655979.2019.1649520

    2. [2]

      Fisher, M. C.; Henk, D. A.; Briggs, C. J.; Brownstein, J. S.; Madoff, L. C.; McCraw, S. L.; Gurr, S. J. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012, 484, 186–194.  doi: 10.1038/nature10947

    3. [3]

      Lamour, K. H.; Stam, R.; Jupe, J.; Huitema, E. The oomycete broad-host-range pathogen Phytophthora capsici. Mol. Plant Pathol. 2012, 13, 329–337.  doi: 10.1111/j.1364-3703.2011.00754.x

    4. [4]

      Lee, H. B.; Kim, Y.; Kim, J. C.; Choi, G. J.; Park, S. H.; Kim, C. J.; Jung, H. S. Activity of some aminoglycoside antibiotics against true fungi, phytophthora and pythium species. J. Appl. Microbiol. 2005, 99, 836–843.  doi: 10.1111/j.1365-2672.2005.02684.x

    5. [5]

      Meitz, J. C.; Linde, C. C.; Thompson, A.; Langenhoven, S.; McLeod, A. Phytophthora capsici on vegetable hosts in South Africa: distribution, host range and genetic diversity. Australas Plant Pathol. 2010, 39, 431–439.  doi: 10.1071/AP09075

    6. [6]

      Gevens, A. J.; Donahoo, R. S.; Lamour, K. H.; Hausbeck, M. K. Characterization of phytophthora capsici causing foliar and pod blight of snap bean in michigan. Plant Dis. 2008, 92, 201.  doi: 10.1094/PDIS-92-2-0201

    7. [7]

      Veloukas, T.; Leroch, M.; Hahn, M.; Karaoglanidis, G. S. Detection and molecular characterization of boscalid-resistant Botrytis cinerea isolates from Strawberry. Plant Dis. 2011, 95, 1302–1307.  doi: 10.1094/PDIS-04-11-0317

    8. [8]

      Panebianco, A.; Castello, I.; Cirvilleri, G.; Perrone, G.; Epifani, F.; Ferrara, M.; Polizzi, G.; Walters, D. R.; Vitale, A. Detection of botrytis cinerea field isolates with multiple fungicide resistance from table grape in Sicily. Crop Prot. 2015, 77, 65–73.  doi: 10.1016/j.cropro.2015.07.010

    9. [9]

      Wang, W.; Zhang, S.; Wang, J. H.; Wu, F. R.; Wang, T.; Xu, G. Bioactivity-guided synthesis accelerates the discovery of 3-(iso)quinolinyl-4-chromenones as potent fungicide candidates. J. Agric. Food Chem. 2021, 69, 491–500.  doi: 10.1021/acs.jafc.0c06700

    10. [10]

      Liu, X. H.; Yu, W.; Min, L. J.; Wedge, D. E.; Tan, C. X.; Weng, J. Q.; Wu, H. K.; Cantrell, C. L.; Bajsa-Hischel, J.; Hua, X. W.; Duke, S. O. Synthesis and pesticidal activities of new quinoxalines. J. Agric. Food Chem. 2020, 68, 7324–7332.  doi: 10.1021/acs.jafc.0c01042

    11. [11]

      Cheng, L.; Zhang, R. R.; Wu, H. K.; Xu, T. M.; Liu, X. H. The synthesis of 6-(tertbutyl)-8-fluoro-2, 3-dimethylquinoline carbonate derivatives and their antifungal activity against pyricularia oryzae. Front. Chem. Sci. Eng. 2019, 13, 369–376.  doi: 10.1007/s11705-018-1734-7

    12. [12]

      Fu, Q.; Cai, P. P.; Cheng, L.; Zhong, L. K.; Tan, C. X.; Shen, Z. H.; Han, L.; Liu, X. H. Synthesis and herbicidal activity of novel pyrazole aromatic ketone analogs as HPPD inhibitor. Pest Manag. Sci. 2020, 76, 868–879.  doi: 10.1002/ps.5591

    13. [13]

      Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol. 2010, 14, 347–361.  doi: 10.1016/j.cbpa.2010.02.018

    14. [14]

      Wang, H.; Zhai, Z. W.; Shi, Y. X.; Tan, C. X.; Weng, J. Q.; Han, L.; Li, B. J.; Liu, X. H. Novel trifluoromethylpyrazole acyl urea derivatives: synthesis, crystal structure, fungicidal activity and docking study. J. Mol. Struct. 2018, 1171, 631–638.  doi: 10.1016/j.molstruc.2018.06.050

    15. [15]

      Jin, T.; Zhai, Z. W.; Han, L.; Weng, J. Q.; Tan, C. X.; Liu, X. H. Synthesis, crystal structure, docking and antifungal activity of a new pyrazole acylurea compound. Chin. J. Struct. Chem. 2018, 37, 1259–1264.
       

    16. [16]

      Sun, N. B.; Zhai, Z. W.; Shen, Z. H.; Weng, J. Q.; Tan, C. X.; Liu, X. H.; Han, L. Synthesis, crystal structure and antifungal activity of N-((2, 6-difluorophenyl)carbamoyl)-1, 3-dimethyl-1H-pyrazole-4-carboxamide. Chin. J. Struct. Chem. 2017, 36, 1667–1672.
       

    17. [17]

      Sun, N. B.; Shen, Z. H.; Zhai, Z. W.; Wu, H. K.; Weng, J. Q.; Tan, C. X.; Liu, X. H. Design, synthesis, fungicidal activity and docking study of acyl urea derivatives containing pyrazole moiety. Chin. J. Org. Chem. 2017, 37, 2044–2049.  doi: 10.6023/cjoc201702003

    18. [18]

      Zhao, W.; Shen, Z. H.; Xu, T. M.; Peng, W. L.; Liu, X. H. Synthesis and nematocidal activity of novel pyrazole carboxamide derivatives against Meloidogyne incognita. Lett. Drug Des. Discov. 2017, 14, 323–329.  doi: 10.2174/1570180813666160930164327

    19. [19]

      Zhao, W.; Shen, Z. H.; Xing, J. H.; Xu, T. M.; Peng, W. L.; Liu, X. H. Synthesis, characterization, nematocidal activity and docking study of novel pyrazole-4-carboxamide derivatives. Chin. J. Struct. Chem. 2017, 36, 423–428.

    20. [20]

      Liu, X. H.; Zhao, W.; Shen, Z. H.; Xing, J. H.; Yuan, J.; Yang, G.; Xu, T. M.; Peng, W. L. Synthesis, nematocidal activity and docking study of novel chiral 1-(3-chloropyridin-2-yl)-3-(trifluoromethyl)-1H-pyrazole-4-carboxamide derivatives. Bioorg. Med. Chem. Lett. 2016, 26, 3626–3628.  doi: 10.1016/j.bmcl.2016.06.004

    21. [21]

      Zhao, W.; Shen, Z. H.; Xu, T. M.; Peng, W. L.; Liu, X. H. Synthesis, nematocidal activity and docking study of novel chiral 1-(3-chloropyridin-2-yl)-3-(difluoromethyl)-1H-pyrazole-4-carboxamide derivatives. J. Heterocycl. Chem. 2017, 54, 1751–1756.  doi: 10.1002/jhet.2753

    22. [22]

      Liang, P. B.; Shen, S.; Xu, Q.; Wang, S. M.; Jin, S. H.; Lu, H. Z.; Dong, Y. H. Design, synthesis biological activity, and docking of novel fluopyram derivatives containing guanidine group. Bioorg. Med. Chem. 2021, 115846.

    23. [23]

      Xiao, L. L.; Yu, L.; Li, P.; Chi, J. Y.; Tang, Z. F.; Li, J.; Tan, S. M.; Wang, X. D. Design, synthesis, and bioactivity evaluation of new thiochromanone derivatives containing a carboxamide moiety. Molecules 2021, 26, 4391.  doi: 10.3390/molecules26154391

    24. [24]

      Chen, J. X.; Yi, C. F.; Wang, S. B.; Wu, S. K.; Li, S. Y.; Hu, D. Y.; Song, B. A. Novel amide derivatives containing 1, 3, 4-thiadiazole moiety: design, synthesis, nematocidal and antibacterial activities. Bioorg. Med. Chem. Lett. 2019, 29, 1203–1210.  doi: 10.1016/j.bmcl.2019.03.017

    25. [25]

      Cheng, Y. N.; Jiang, Z. H.; Sun, L. S.; Su, Z. Y.; Zhang, M. M.; Li, H. L. Synthesis of 1, 2, 4-triazole benzoyl arylamine derivatives and their high antifungal activities. Eur. J. Med. Chem. 2020, 200, 112463.  doi: 10.1016/j.ejmech.2020.112463

    26. [26]

      Sun, X. L.; Ji, Z. M.; Wei, S. P.; Ji, Z. Q. Design, synthesis and herbicidal activity of 5-cyclopropyl-N-phenylisoxazole-4-carboxamides. J. Mol. Struct. 2020, 1220, 128628.  doi: 10.1016/j.molstruc.2020.128628

    27. [27]

      Khallaf, A.; Wang, P.; Liu, H.; Zhuo, S. P.; Zhu, H. J. 1, 2, 4-Oxadiazole ring-containing pyridylpyrazole-4-carboxamides: synthesis and evaluation as novel insecticides of the anthranilic diamide family. J. Heterocycl. Chem. 2020, 57, 1981–1992.  doi: 10.1002/jhet.3927

    28. [28]

      Sheldrick, G. M. SHELXT-2018/2 and SHELXL-2018/3, programs for the solution and refining of crystal structures. University of Göttingen, Germany 2018.

    29. [29]

      Yang, D. Y.; Zhao, B.; Fan, Z. J.; Yu, B.; Zhang, N. L.; Li, Z. M.; Zhu, Y. L.; Zhou, J. H.; Kalinina, T. A.; Glukhareva, T. V. Synthesis and biological activity of novel succinate dehydrogenase inhibitor derivatives as potent fungicide candidates. J. Agric. Food Chem. 2019, 67, 13185–13194.  doi: 10.1021/acs.jafc.9b05751

    30. [30]

      Wu, Q.; Zhao, B.; Fan, Z.; Guo, X.; Yang, D.; Zhang, N.; Yu, B.; Zhou, S.; Zhao, J.; Chen, F. Discovery of novel piperidinyl-thiazole derivatives as broad-spectrum fungicidal candidate. J. Agric. Food Chem. 2019, 67, 1360–1370.  doi: 10.1021/acs.jafc.8b06054

    31. [31]

      Wang, M. L.; Rui, P.; Liu, C. X.; Du, Y.; Qin, P. W.; Qi, Z. Q.; Ji, M. S.; Li, X. H.; Cui, Z. N. Design, synthesis and fungicidal activity of 2-substituted phenyl-2-oxo-, 2-hydroxyand 2-acyloxyethylsulfonamides. Molecules 2017, 22, 738.  doi: 10.3390/molecules22050738

  • 加载中
    1. [1]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    4. [4]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    5. [5]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    8. [8]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    9. [9]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    10. [10]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    17. [17]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    18. [18]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    19. [19]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    20. [20]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

Metrics
  • PDF Downloads(2)
  • Abstract views(375)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return