Citation: Li-Xin LI, Chen CHEN, Zi-Hao LI, Fei-Fei WANG, Yun LIU, Zhi-Guo YI. Controllable Synthesis, Polar Behavior and Photoelectric Properties of BiOCl Microplates[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220307. doi: 10.14102/j.cnki.0254-5861.2011-3352 shu

Controllable Synthesis, Polar Behavior and Photoelectric Properties of BiOCl Microplates

  • Corresponding author: Fei-Fei WANG, f_f_w@sohu.com Yun LIU, yliu@rsc.anu.edu.au Zhi-Guo YI, zhiguo@mail.sic.ac.cn
  • Received Date: 3 September 2021
    Accepted Date: 10 November 2021

    Fund Project: the National Natural Science Foundation of China 51872311the National Natural Science Foundation of China 51902331the National Natural Science Foundation of China 11974250the Shanghai International Science and Technology Cooperation Fund Project 18520723200the Science and Technology Commission of Shanghai Municipality 19070502800the Science and Technology Commission of Shanghai Municipality 19ZR1464900the Frontier Science Key Project of the Chinese Academy of Sciences QYZDB-SSW-JSC027

Figures(5)

  • Bismuth oxychloride (BiOCl) square microplates were prepared via a facile hydrothermal method. The X-ray diffraction patterns of the samples reveal a tetragonal BiOCl phase, and the scanning electron microscopy images show plate-like structures with large lateral size of 3~6 μm and thickness in the range of 100~300 nm. The effects of surfactant, reaction temperature and duration on the morphology of BiOCl powders are systematically investigated. The polar behavior of a BiOCl single-crystalline microplate is examined by using piezoresponse force microscopy evidenced over 80 pm displacement under 40 V bias voltage. In addition, the photoelectric performance of the BiOCl microplates is evaluated by using electrochemical workstation with three-electrode system, and large photocurrent densities (over 0.5 μA/cm2) and fast photoresponse (0.7~1.1 s) are detected by applying both 365 nm monochromatic light and sunlight illumination. The surface potential changes of BiOCl microplate under different light condition, characterized by in-situ Kelvin probe force microscopy, further verify the separation ability of the photo-induced charge carriers. These findings would be beneficial for further design photocatalytic and piezocatalytic materials.
  • 加载中
    1. [1]

      Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015, 7, 44−126.

    2. [2]

      Zhang, S.; Guo, S.; Chen, Z.; Wang, Y.; Gao, H.; Gómez-Herrero, J.; Ares, P.; Zamora, F.; Zhu, Z.; Zeng, H. Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem. Soc. Rev. 2018, 47, 982−1021.  doi: 10.1039/C7CS00125H

    3. [3]

      Xu, M.; Yang, J.; Sun, C.; Liu, L.; Cui, Y.; Liang, B. Performance enhancement strategies of Bi-based photocatalysts: a review on recent progress. Chem. Eng. J. 2020, 389, 124402−19.  doi: 10.1016/j.cej.2020.124402

    4. [4]

      Tan, C.; Cao, X.; Wu, X. J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G. H.; Sindoro, M.; Zhang, H. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225−331.  doi: 10.1021/acs.chemrev.6b00558

    5. [5]

      Di, J.; Xia, J.; Li, H.; Guo, S.; Dai, S. Bismuth oxyhalide layered materials for energy and environmental applications. Nano Energy 2017, 41, 172−92.  doi: 10.1016/j.nanoen.2017.09.008

    6. [6]

      Ding, L.; Wei, R.; Chen, H.; Hu, J.; Li, J. Controllable synthesis of highly active BiOCl hierarchical microsphere self-assembled by nanosheets with tunable thickness. Appl. Catal. B 2015, 172, 91−9.

    7. [7]

      Wang, H.; Chen, S.; Yong, D.; Zhang, X.; Li, S.; Shao, W.; Sun, X.; Pan, B.; Xie, Y. Giant electron-hole interactions in confined layered structures for molecular oxygen activation. J. Am. Chem. Soc. 2017, 139, 4737−42.  doi: 10.1021/jacs.6b12273

    8. [8]

      Ouyang, W.; Teng, F.; Fang, X. High performance BiOCl nanosheets/TiO2 nanotube arrays heterojunction UV photodetector: the influences of self-induced inner electric fields in the BiOCl nanosheets. Adv. Funct. Mater. 2018, 28, 1707178-12.  doi: 10.1002/adfm.201707178

    9. [9]

      Teng, F.; Ouyang, W.; Li, Y.; Zheng, L.; Fang, X. Novel structure for high performance UV photodetector based on BiOCl/ZnO hybrid film. Small 2017, 13, 1700156−8.  doi: 10.1002/smll.201700156

    10. [10]

      Ouyang, W.; Su, L.; Fang, X. UV photodetectors based on BiOCl nanosheet arrays: the effects of morphologies and electrode configurations. Small 2018, 14, 1801611−11.  doi: 10.1002/smll.201801611

    11. [11]

      Cui, D.; Wang, L.; Xu, K.; Ren, L.; Wang, L.; Yu, Y.; Du, Y.; Hao, W. Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation. J. Mater. Chem. A 2018, 6, 2193−9.  doi: 10.1039/C7TA09897A

    12. [12]

      Guan, M.; Xiao, C.; Zhang, J.; Fan, S.; An, R.; Cheng, Q.; Xie, J.; Zhou, M.; Ye, B.; Xie, Y. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 2013, 135, 10411−7.  doi: 10.1021/ja402956f

    13. [13]

      Li, M.; Zhang, J.; Gao, H.; Li, F.; Lindquist, S. E.; Wu, N.; Wang, R. Microsized BiOCl square nanosheets as ultraviolet photodetectors and photocatalysts. ACS Appl. Mater. Inter. 2016, 8, 6662−8.  doi: 10.1021/acsami.6b00042

    14. [14]

      Cai, Y.; Li, D.; Sun, J.; Chen, M.; Li, Y.; Zou, Z.; Zhang, H.; Xu, H.; Xia, D. Synthesis of BiOCl nanosheets with oxygen vacancies for the improved photocatalytic properties. Appl. Surf. Sci. 2018, 439, 697−704.  doi: 10.1016/j.apsusc.2018.01.089

    15. [15]

      Li, H.; Xu, S.; Huang, Z.; Wang, J.; Zhang, L.; Zhang, C. Facet-dependent nonlinear optical properties of bismuth oxychloride single-crystal nanosheets. J. Mater. Chem. C 2018, 6, 8709−16.  doi: 10.1039/C8TC01613E

    16. [16]

      Zhang, L.; Niu, C. G.; Zhao, X. F.; Liang, C.; Guo, H.; Zeng, G. M. Ultrathin BiOCl single-crystalline nanosheets with large reactive facets area and high electron mobility efficiency: a superior candidate for high-performance dye self-photosensitization photocatalytic fuel cell. ACS Appl. Mater. Inter. 2018, 10, 39723−34.  doi: 10.1021/acsami.8b14227

    17. [17]

      Shao, D.; Zhang, L.; Sun, S.; Wang, W. Oxygen reduction reaction for generating H2O2 through a piezo-catalytic process over bismuth oxychloride. ChemSusChem. 2018, 11, 527−31.  doi: 10.1002/cssc.201702405

    18. [18]

      Lei, H.; Zhang, H.; Zou, Y.; Dong, X.; Jia, Y.; Wang, F. Synergetic photocatalysis/piezocatalysis of bismuth oxybromide for degradation of organic pollutants. J. Alloys Compd. 2019, 8091, 151840−8.

    19. [19]

      Yoon, J.; Kim, J.; Tieves, F.; Zhang, W.; Alcalde, M.; Hollmann, F.; Park, B. C. Piezobiocatalysis: ultrasound-driven enzymatic oxyfunctionalization of C–H bonds. ACS Catal. 2020, 10, 5236−42.  doi: 10.1021/acscatal.0c00188

    20. [20]

      Ismail, M.; Wu, Z.; Zhang, L.; Ma, J.; Jia, Y.; Hu, Y.; Wang, Y. High-efficient synergy of piezocatalysis and photocatalysis in bismuth oxychloride nanomaterial for dye decomposition. Chemosphere 2019, 228, 212−8.  doi: 10.1016/j.chemosphere.2019.04.121

    21. [21]

      Su, Y.; Zhang, L.; Wang, W.; Shao, D. Internal electric field assisted photocatalytic generation of hydrogen peroxide over BiOCl with HCOOH. ACS. Sustainable Chem. Eng. 2018, 6, 8704−10.  doi: 10.1021/acssuschemeng.8b01023

    22. [22]

      Intaphong, P.; Phuruangrat, A.; Thongtem, S.; Thongtem, T. Sonochemical synthesis and characterization of BiOI nanoplates for using as visible-light-driven photocatalyst. Mater. Lett. 2018, 213, 88−91.  doi: 10.1016/j.matlet.2017.11.014

    23. [23]

      Geng, J.; Hou, W. H.; Lv, Y. N.; Zhu, J. J.; Chen, H. Y. One-dimensional BiPO4 nanorods and two-dimensional BiOCl lamellae: fast low-temperature sonochemical synthesis, characterization, and growth mechanism. Inorg. Chem. 2005, 44, 8503−9.  doi: 10.1021/ic050674g

    24. [24]

      Lan, H.; Zhang, G.; Zhang, H.; Liu, H.; Liu, R.; Qu, J. Solvothermal synthesis of BiOI flower-like microspheres for efficient photocatalytic degradation of BPA under visible light irradiation. Catal. Commun. 2017, 98, 9−12.  doi: 10.1016/j.catcom.2017.02.028

    25. [25]

      Sarwan, B.; Pare, B.; Acharya, A. D. The effect of oxygen vacancies on the photocatalytic activity of BiOCl nanocrystals prepared by hydrolysis and UV light irradiation. Mater. Sci. Semicon. Proc. 2014, 25, 89−97.  doi: 10.1016/j.mssp.2013.09.015

    26. [26]

      Li, M.; Zhang, Y.; Li, X.; Yu, S.; Du, X.; Guo, Y.; Huang, H. In-depth insight into facet-dependent charge movement behaviors and photo-redox catalysis: a case of {001} and {010} facets BiOCl. J. Colloid. Inter. Sci. 2017, 508, 174−83.  doi: 10.1016/j.jcis.2017.08.042

    27. [27]

      Mahmoodi, V.; Ahmadpour, A.; Rohani Bastami, T.; Hamed Mousavian, M. T. Facile synthesis of BiOI nanoparticles at room temperature and evaluation of their photoactivity under sunlight irradiation. Photochem. Photobiol. 2018, 94, 4−16.  doi: 10.1111/php.12832

    28. [28]

      Bárdos, E.; Király, A. K.; Pap, Z.; Baia, L.; Garg, S.; Hernádi, K. The effect of the synthesis temperature and duration on the morphology and photocatalytic activity of BiOX (X = Cl, Br, I) materials. Appl. Surf. Sci. 2019, 479, 745−56.  doi: 10.1016/j.apsusc.2019.02.136

    29. [29]

      Zhang, J.; Wu, J.; Lu, P.; Huang, T.; Tian, H.; Zhou, R.; Ren, J.; Yuan, B.; Sun, X.; Zhang, W. The effect of pH on Synthesis of BiOCl and its photocatalytic oxidization performance. Mater. Lett. 2017, 186, 353−6.  doi: 10.1016/j.matlet.2016.09.117

    30. [30]

      Zhou, X.; Yan, F.; Wu, S.; Shen, B.; Zeng, H.; Zhai, J. Remarkable piezophoto coupling catalysis behavior of BiOX/BaTiO3 (X = Cl, Br, Cl0.166Br0.834) piezoelectric composites. Small 2020, 16, 2001573−15.  doi: 10.1002/smll.202001573

    31. [31]

      Hu, X.; Xu, Y.; Zhu, H.; Hua, F.; Zhu, S. Controllable hydrothermal synthesis of BiOCl nanoplates with high exposed {001} facets. Mater. Sci. Semicon. Proc. 2016, 41, 12−6.  doi: 10.1016/j.mssp.2015.08.016

    32. [32]

      Garcia-Perez, U. M.; Martinez-de la Cruz, A.; Sepulveda-Guzman, S.; Peral, J. Low-temperature synthesis of BiVO4 powders by pluronic-assisted hydrothermal method: effect of the surfactant and temperature on the morphology and structural control. Ceram. Int. 2014, 40, 4631−8.  doi: 10.1016/j.ceramint.2013.09.002

    33. [33]

      Li, P.; Zhai, J.; Shen, B.; Zhang, S.; Li, X.; Zhu, F.; Zhang, X. Ultrahigh piezoelectric properties in textured (K, Na)NbO3-based lead-free ceramics. Adv. Mater. 2018, 30, 1705171.  doi: 10.1002/adma.201705171

    34. [34]

      Zhang, M. H.; Wang, K.; Du, Y. J.; Dai, G.; Sun, W.; Li, G.; Hu, D.; Thong, C. H.; Zhao, C.; Xi, X. Q.; Yue, Z. X.; Li, J. F. High and temperature-insensitive piezoelectric strain in alkali niobate lead-free perovskite. J. Am. Chem. Soc. 2017, 139, 3889−95.  doi: 10.1021/jacs.7b00520

    35. [35]

      Liu, F.; Wang, L.; Wang, J.; Wang, F.; Chen, Y.; Zhang, S.; Sun, H.; Liu, J.; Wang, G.; Hu, Y.; Jiang, C. 2D Ruddlesden-Popper perovskite single crystal field-effect transistors. Adv. Funct. Mater. 2020, 31, 2005662.

    36. [36]

      Li, M.; Huang, H.; Yu, S.; Tian, N.; Dong, F.; Du, X.; Zhang, Y. Simultaneously promoting charge separation and photoabsorption of BiOX (X = Cl, Br) for efficient visible-light photocatalysis and photosensitization by compositing low-cost biochar. Appl. Surf. Sci. 2016, 386, 285−95.  doi: 10.1016/j.apsusc.2016.05.171

    37. [37]

      Li, H.; Long, B.; Ye, K. H.; Cai, Y.; He, X.; Lan, Y.; Yang, Z.; Ji, H. A recyclable photocatalytic tea-bag-like device model based on ultrathin Bi/C/BiOX (X = Cl, Br) nanosheets. Appl. Surf. Sci. 2020, 515, 145967−13.  doi: 10.1016/j.apsusc.2020.145967

  • 加载中
    1. [1]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    2. [2]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    3. [3]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    4. [4]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    5. [5]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    6. [6]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    7. [7]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    8. [8]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    9. [9]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    10. [10]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    11. [11]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    12. [12]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

Metrics
  • PDF Downloads(11)
  • Abstract views(498)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return