Citation: Hong-Ru FU, Yu-Ying JIANG, Jia-Hua LUO, Ting LI. A Robust Heterometallic Cd(II)/Ba(II)-Organic Framework with Exposed Amino Group and Active Sites Exhibiting Excellent CO2/CH4 and C2H2/CH4 Separation[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220328. doi: 10.14102/j.cnki.0254-5861.2011-3340 shu

A Robust Heterometallic Cd(II)/Ba(II)-Organic Framework with Exposed Amino Group and Active Sites Exhibiting Excellent CO2/CH4 and C2H2/CH4 Separation

  • Corresponding author: Ting LI, liting880202@163.com
  • Received Date: 25 August 2021
    Accepted Date: 18 October 2021

    Fund Project: Natural Science Foundation of China U1904183the Science Foundation for Excellent Youth Scholars of Henan 212300410061the Science Foundation for Excellent Youth Scholars of Henan 20HASTIT006

Figures(6)

  • A microporous and robust bimetal-organic framework [Cd2Ba(NH2-BTB)2]·2(DMA)·2(H2O) (1) was constructed by mixing the heterometallic nodes and an tridentate carboxyl ligand with amino group, benefiting from the synergistic effect of active sites, exposed amino groups and ultramicroporous structure. This compound displays an extraordinary selectivity of CO2/CH4 and C2H2/CH4 (16.7 and 146.3) at 298 K and 1 atm, which can exceed those of many reported MOFs under the same conditions. This work provides an important model to design metal-organic frameworks for the adsorption and separation of small gas molecules.
  • 加载中
    1. [1]

      Xue, Y. Y.; Bai, X. Y.; Zhang, J.; Wang, Y.; Li, S. N.; Jiang, Y.; Hu, M.; Zhai, Q. Precise pore space partitions combined with high-density hydrogen-bonding acceptors within metal-organic frameworks for highly efficient acetylene storage and separation. Angew. Chem. Int. Ed. 2021, 60, 10122–10128.  doi: 10.1002/anie.202015861

    2. [2]

      He, Y.; Krishna, R.; Chen, B. L. Metal-organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energy Environ. Sci. 2012, 5, 9107–9120.  doi: 10.1039/c2ee22858k

    3. [3]

      Fu, X.; Wang, Y.; Liu, Q. Metal-organic frameworks for C2H2/CO2 separation. Dalton Trans. 2020, 49, 16598–16607.  doi: 10.1039/D0DT03349A

    4. [4]

      Li, G. P.; Li, Z.; Xie, H. F.; Fu, Y. L.; Wang, Y. Y. Efficient C2 hydrocarbons and CO2 adsorption and separation in a multi-site functionalized MOF. Chin. J. Struct. Chem. 2021, 40, 1047–1054.

    5. [5]

      Fu, H. R.; Wang, N.; Wu, X. X.; Li, F. F.; Zhao, Y.; Ma, L. F.; Du, M. Circularly polarized room-temperature phosphorescence and encapsulation engineering for MOF-based fluorescent/phosphorescent white light-emitting devices. Adv. Opt. Mater. 2020, 8, 2000330.  doi: 10.1002/adom.202000330

    6. [6]

      Wu, Y. P.; Tian, J. W.; Liu, S.; Li, B.; Zhao, J.; Ma, L. F.; Li, D. S.; Lan, Y. Q.; Bu, X. Bi-microporous metal-organic frameworks with cubane [M4(OH)4] (M = Ni, Co) clusters and pore-space partition for electrocatalytic methanol oxidation reaction. Angew. Chem. Int. Ed. 2019, 58, 12185–12189.  doi: 10.1002/anie.201907136

    7. [7]

      Jiang, Y. Y.; Zhang, K.; Zhou, M. S.; Gao, P. F.; Fu, H. R. A fluorescence/phosphorescence dual-emitting metal-organic framework exhibiting two approaches for single-phase white-light emission. J. Solid State Chem. 2021, 304, 122563.  doi: 10.1016/j.jssc.2021.122563

    8. [8]

      Fu, H. R.; Zhao, Y.; Zhou, Z.; Yang, X. G.; Ma, L. F. Neutral ligand TIPA-based two 2D metal-organic frameworks: ultrahigh selectivity of C2H2/CH4 and efficient sensing and sorption of Cr(VI). Dalton Trans. 2018, 47, 3725–3732.  doi: 10.1039/C8DT00206A

    9. [9]

      Tan, Y. X.; Wang, F.; Zhang, J. Design and synthesis of multifunctional metal-organic zeolites. Chem. Soc. Rev. 2018, 47, 2130–2144.  doi: 10.1039/C7CS00782E

    10. [10]

      Li, X. M.; Pan, Y. R.; Liu, B.; Zhou, S. Synthesis, structural characterization and fluorescent properties of a cadmium coordination polymer with 4-nitrophthalate and 1, 4-bis(imidazol-1-yl)-benzene. Chin. J. Struct. Chem. 2020, 39, 955–959.

    11. [11]

      Jiang, W.; Yang, J.; Yan, G.; Zhou, S.; Liu, B.; Qiao, Y.; Zhou, T.; Wang, J.; Che, G. A novel 3-fold interpenetrated dia metal-organic framework as a heterogeneous catalyst for CO2 cycloaddition. Inorg. Chem. Commun. 2020, 113, 107770.  doi: 10.1016/j.inoche.2020.107770

    12. [12]

      Jiang, W.; Yan, G.; Lv, M.; Lv, C.; Liu, B.; Qiao, Y.; Liu, C.; Che, G. Synthesis, crystal structure and photocatalytic property of a porphyrinbased coordination polymer. Inorg. Nano-Met. Chem. 2021, 51, 1029–1035.  doi: 10.1080/24701556.2020.1813773

    13. [13]

      Yang, L.; Yan, L.; Wang, Y.; Liu, Z.; He, J.; Fu, Q.; Liu, D.; Gu, X.; Dai, P.; Li, L.; Zhao, X. Adsorption site selective occupation strategy within a metal-organic framework for highly efficient sieving acetylene from carbon dioxide. Angew. Chem. Int. Ed. 2021, 60, 4570–4574.  doi: 10.1002/anie.202013965

    14. [14]

      Qin, J. H.; Huang, Y. D.; Zhao, Y.; Yang, X. G.; Li, F. F.; Wang, C.; Ma, L. F. Highly dense packing of chromophoric linkers achievable in a pyrene-based metal-organic framework for photoelectric response. Inorg. Chem. 2019, 58, 15013–15016.  doi: 10.1021/acs.inorgchem.9b02203

    15. [15]

      Peng, Y. L.; Pham, T.; Li, P.; Wang, T.; Chen, Y.; Chen, K. J.; Forrest, K. A.; Space, B.; Cheng, P.; Zaworotko, M. J.; Zhang, Z. Robust ultramicroporous metal-organic frameworks with benchmark affinity for acetylene. Angew. Chem., Int. Ed. 2018, 57, 10971−10975.  doi: 10.1002/anie.201806732

    16. [16]

      Qazvini, O. T.; Babarao, R.; Telfer, S. G. Multipurpose metalorganic framework for the adsorption of acetylene: ethylene purification and carbon dioxide removal. Chem. Mater. 2019, 31, 4919−4926.  doi: 10.1021/acs.chemmater.9b01691

    17. [17]

      Zhang, L.; Jiang, K.; Li, Y.; Zhao, D.; Yang, Y.; Cui, Y.; Chen, B.; Qian, G. Microporous metal-organic framework with exposed amino functional group for high acetylene storage and excellent C2H2/CO2 and C2H2/CH4 separations. Cryst. Growth Des. 2017, 17, 2319−2322.  doi: 10.1021/acs.cgd.7b00277

    18. [18]

      Chen, F.; Bai, D.; Wang, X.; He, Y. A comparative study of the effect of functional groups on C2H2 adsorption in NbO-type metal-organic frameworks. Inorg. Chem. Front. 2017, 4, 960–967.  doi: 10.1039/C7QI00063D

    19. [19]

      He, Y.; Chen, F.; Li, B.; Qian, G.; Zhou, W.; Chen, B. Porous metal-organic frameworks for fuel storage. Coord. Chem. Rev. 2018, 373, 167.  doi: 10.1016/j.ccr.2017.10.002

    20. [20]

      Zhu, X. W.; Zhou, X. P.; Li, D. Exceptionally water stable heterometallic gyroidal MOFs: tuning the porosity and hydrophobicity by doping metal ions. Chem. Commun. 2016, 52, 6513−6516.  doi: 10.1039/C6CC02116F

    21. [21]

      Kökçam-Demir, Ü.; Goldman, A.; Esrafili, L.; Gharib, M.; Morsali, A.; Weingart, O.; Janiak, C. Coordinatively unsaturated metal sites (open metal sites) in metal-organic frameworks: design and applications. Chem. Soc. Rev. 2020, 49, 2751–2798.  doi: 10.1039/C9CS00609E

    22. [22]

      Spek, A. L. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C 2015, 71, 3–8.

    23. [23]

      Sheldrick, G. M. SHELXT-integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3−8.

    24. [24]

      Spek, A. L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. Sect. C: Struct. Chem. 2015, 71, 9−18.  doi: 10.1107/S2053229614024929

    25. [25]

      Fu, H. R.; Zhang, J. Structural transformation and hysteretic sorption of light hydrocarbons in a flexible Zn-pyrazole-adenine framework. Chem. Eur. J. 2015, 21, 5700–5703.  doi: 10.1002/chem.201406323

    26. [26]

      Gao, J.; Qian, X.; Lin, R.; Krishna, R.; Wu, H.; Zhou, W.; Chen, B. Mixed metal-organic framework with multiple binding sites for efficient C2H2/CO2 separation. Angew. Chem. Int. Ed. 2020, 59, 4396–4400.  doi: 10.1002/anie.202000323

    27. [27]

      Chen, J.; Loo, L. S.; Wang, K. An ideal absorbed solution theory (IAST) study of adsorption equilibria of binary mixtures of methane and ethane on a templated carbon. J. Chem. Eng. Data 2011, 56, 1209–1212.  doi: 10.1021/je101099c

    28. [28]

      He, Y.; Zhang, Z.; Xiang, S.; Fronczek, F. R.; Krishna, R.; Chen, B. A microporous metal-organic framework for highly selective separation of acetylene, ethylene, and ethane from methane at room temperature. Chem. Eur. J. 2012, 18, 613−619.  doi: 10.1002/chem.201102734

    29. [29]

      Ma, J. X.; Guo, J.; Wang, H.; Li, B.; Yang, T.; Chen, B. Microporous lanthanide metal-organic framework constructed from lanthanide metalloligand for selective separation of C2H2/CO2 and C2H2/CH4 at room temperature. Inorg. Chem. 2017, 56, 7145−7150.  doi: 10.1021/acs.inorgchem.7b00762

    30. [30]

      Meng, L.; Yang, L.; Chen, C.; Dong, X.; Ren, S.; Li, G.; Li, Y.; Han, Y.; Shi, Z.; Feng, S. Selective acetylene adsorption within an imino-functionalized nanocage-based metal-organic framework. ACS Appl. Mater. Interfaces 2020, 12, 5999−6006.

    31. [31]

      Li, Q.; Wu, N.; Li, J.; Wu, D.; Li, Y. Amino-functionalized water-stable metal-organic framework for enhanced C2H2/CO2 separation performance. Inorg. Chem. 2020, 59, 2631−2635.  doi: 10.1021/acs.inorgchem.9b03295

    32. [32]

      Fu, H. R.; Yan, L. B.; Xie, T. 4-pyrazolecarboxylic acid-based MOF-5 analogs framework with high adsorption and separation of light hydrocarbons. Chin. J. Struct. Chem. 2018, 37, 796–802.

  • 加载中
    1. [1]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    2. [2]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    3. [3]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    4. [4]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    5. [5]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    6. [6]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    7. [7]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    10. [10]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    11. [11]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    12. [12]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    13. [13]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    14. [14]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    15. [15]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    16. [16]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    17. [17]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    18. [18]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    19. [19]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

Metrics
  • PDF Downloads(2)
  • Abstract views(431)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return