Two Polynuclear Fe Complexes with Boat-like Core: Syntheses, Structures and Magnetic Properties
- Corresponding author: Hua YANG, Jian-Min DOU, dougroup@163.com
Citation:
Na YANG, Hua YANG, Hai-Quan TIAN, Da-Cheng LI, Jian-Min DOU. Two Polynuclear Fe Complexes with Boat-like Core: Syntheses, Structures and Magnetic Properties[J]. Chinese Journal of Structural Chemistry,
;2022, 41(3): 220304.
doi:
10.14102/j.cnki.0254-5861.2011-3311
Coordination complexes have attracted considerable attention due to their charming structures and various properties in the areas of molecular magnetism, catalysis, luminescence, bioactivities and so on[1-5]. Moreover, metal complexes not only exhibit definitive structures and metal coordination environment, but also serve as remarkable candidates to study single molecule magnets (SMMs). The magnetic performance reveals that the magnetic properties depend on the paramagnetic metal ions, such as transition metal ions (MnIII, FeIII, CoII)[6-8] and lanthanide ions (DyIII, TbIII, ErIII)[9, 10], the coupling interactions, as well as the effect of ligand field[11-14]. While solvent molecules, assistant ligands and/or other anions can influence the supramolecular structures and coordination enviroment, which would further change the ligand-field of metal centers. As a result, magnetic behavior would be influenced or changed[15]. Usually, in the design of complexes, the researcher will combine the paramagnetic metal ions with the large magnetic anisotropy or high spin-orbit coupling and multidendate ligand into an experiment process, and/or add the second assistant ligand to enrich the structures and properties. Therefore, it is promising to obtain the expected products through choosing suitable ligands and metal ions, as well as controlling the coordination environment through assistant ligand or solvent molecules, and further explore the supramolecular interactions and relevant properties.
Metallacrowns (MCs) are inorganic metal macrocyclic complexes, regarded as metal ions and nitrogen atoms replacing the methylene carbon atoms of crown ethers to exhibit -[M–N–O]-repeat unit in their ring[16, 17]. Since Pecoraro and Lah reported the first metallacrown in 1989, a variety of metallacrowns have been synthesized with the structural types consisting of 9-MC-3, 12-MC-4, 15-MC-5, 18-MC-6, 24-MC-8, 30-MC-10, 45-MC-12 and 60-MC-20. The reaserch fields involved coordination polymers[18-20], molecular magnetisms[21, 22], luminescence[23, 24] and magnetic resonance imaging contrasts[25]. Numerous homometallic FeIII MCs have been reported with the structure Containing FeIII[9-MCFeN(shi)III-3][26], CuII[12-MCFeN(Shi)III-4][27], [18-MCFeIII-6][28, 29], and their magnetocaloric effect has been discussed in detail. The recent studies of molecular magnets showed that the high spin FeIII complexes with S = 5/2 spin state presented spin crossover (SCO)[30, 31]. Herein, in our experiment process, we chose tetradentate Schiff-base ligands (N-(2-hydroxyethyl)-3-methoxysalicylaldimin H2L) with rich N, O donors, high-spin FeIII ions as well as the bridging sodium nitroprusside to synthesize Fe-based complexes. Successfully, two polynuclear complexes {NaFe4(μ4-O)(L)4(μ2-Cl)[Fe(CN)5NO](H2O)(DMF)2} and {NaFe4(μ4-O)(L)4(μ2-OEt)[Fe(CN)5NO](H2O)(DMF)2} were obtained, and their structures were characterized through X-ray singlecrystal diffraction, elemental analysis, IR and spectroscopic analysis, as well as their supramolecular frameworks and magnetic properties were explored in detail.
All the chemical materials were commercially available and used as received. Elemental analyses for C, H, and N were acquired using an Elementar Vario EL analyzer. The infrared spectra were recorded from KBr disks in the range of 400~4000 cm-1 on a Nicolet iS50 FT-IR spectrometer. Powder X-ray diffraction patterns were obtained on a Smart Lab. Variable temperature magnetic susceptibility measurements were carried out on a Quantum Design MPMS-XL7 SQUID magnetometer.
A solution of o-vanillin (0.1522 g, 1 mmol) and ethanolamine (0.0611 g, 1 mmol) in 12 mL N, N-dimethylformamide (DMF) was stirred for 0.5 h at room temperature. With stirring, triethylamine (0.1012 g, 1 mmol) was added into the above solution, and then FeCl3·6H2O (0.2703 g, 1 mmol) was added to the above solution. After stirring for 2 h, the mixture became black. Then, a solid Na2[Fe(CN)5NO]·2H2O (0.2979 g, 1 mmol) was added and the mixture was stirred for another 2 h. The solution was filtered and the filtrate was layered with EtOH and Et2O. The black block crystals suitable for X-ray analysis were obtained within a week with about 48% yield on Fe. Anal. Calcd. (%) for C51H59ClFe5N12NaO17: C, 42.28; H, 4.04; N, 11.60. Found: C, 42.25; H, 4.08; N, 11.57. IR (KBr, cm−1): 3431 (br), 2933 (br), 2142 (w), 1885 (s), 1633 (vs), 1552 (w), 1471 (m), 1391 (w), 1305 (m), 1222 (s), 1035 (w), 971 (w), 865 (w), 739 (m), 632 (w), 524 (w).
A solution of o-vanillin (0.1522 g, 1 mmol) and ethanolamine (0.0611 g, 1 mmol) in 9 mL DMF and 3 mL acetonitrile was stirred for 0.5 h at room temperature. With stirring, triethylamine (0.2024 g, 2 mmol) was added into the above solution. Then, into the light yellow solution, FeCl3·6H2O (0.2703 g, 1 mmol) was added. After stirring for 2 h, the mixture became black, and a solid, Na2[Fe(CN)5NO]·2H2O (0.2979 g, 1 mmol), was added followed by further stirring for another 2 h. The solution was filtered and the filtrate was layered with EtOH and Et2O. The black block crystals suitable for X-ray analysis were obtained within a week with about 45% yield based on Fe. Anal. Calcd. (%) for C53H65Fe5N12NaO18: C, 43.55; H, 4.45; N, 11.50. Found (%): C, 43.58; H, 4.43; N, 11.48. IR (KBr, cm−1): 3423 (br), 2922 (br), 2141 (w), 1885 (s), 1633 (vs), 1552 (w), 1471 (m), 1391 (w), 1307 (m), 1221 (s), 1035 (w), 972 (w), 865 (w), 739 (m), 619 (w), 426 (w).
X-ray diffraction data for 1 and 2 were obtained on anAgilent Xcalibur Eos Gemini CCD plate diffractometer equipped with graphite monochromatic CuKα radiation (λ = 1.54184 Å). All the crystal structures were solved by direct methods using the SHELXS-18 program and refined by the full-matrix least-squares on F2 using the SHELXL program[32]. Non-hydrogen atoms are refined with displacement temperature parameters. Hydrogen atoms of the organic ligand are theoretically determined with isotropic thermal displacement parameters. Table 1 shows the crystal data and structure refinement of 1 and 2. Selected bond lengths and bond angles for 1 and 2 are listed in Table S3 and Table S4.
Crystal data | 1 | 2 |
Empirical formula | C51H59ClFe5N12NaO17 | C53H65Fe5N12NaO18 |
Formula weight | 1449.79 | 1460.41 |
Crystal system | Triclinic | Triclinic |
Space group | P |
P |
a (Å) | 15.6357(1) | 13.9367(1) |
b (Å) | 16.5733(2) | 14.5856(2) |
c (Å) | 17.6867(1) | 20.3766(4) |
α (º) | 71.111(6) | 80.084(7) |
β (º) | 84.047(5) | 74.149(7) |
γ (º) | 71.735(6) | 68.295(8) |
Volume (Å3) | 4117.9(5) | 3690.3(5) |
Z | 2 | 2 |
Dc (g/cm3) | 1.169 | 1.314 |
μ (CuKα) (mm-1) | 7.734 | 8.319 |
λ (Å) | 1.54184 | 1.54184 |
F(000) | 1486 | 1504 |
Crystal size (mm) | 0.120 × 0.110 × 0.100 | 0.130 × 0.120 × 0.110 |
T (K) | 293(2) | 134(2) |
S | 0.869 | 0.924 |
Reflections collected | 29458 | 27798 |
R and wR (I > 2σ(I)) | 0.0643, 0.1527 | 0.0703, 0.1532 |
R and wR (all data) | 0.1144, 0.2624 | 0.1334, 0.2743 |
The reaction of FeCl3·6H2O with N-(2-hydroxyethyl)-3-methoxysalicylaldimine (H2L) in a 1:1 molar ratio in DMF solution yielded complexes {NaFe4(μ4-O)(L)4(μ2-Cl)[Fe-(CN)5NO](H2O)(DMF)2} (1) and {NaFe4(μ4-O)(L)4(μ2-OEt)-[Fe(CN)5NO](H2O)(DMF)2} (2). It can be seen from Scheme 1 that 1 was isolated with a chloride bridging two Fe ions, while the addition of MeCN solvent resulted into the information of 2 with one μ2-OEt replacing μ2-Cl- to bridge two Fe ions. The PXRD of the crystals revealed the purity of 1 and 2 in Fig. S1.
Complex 1 crystallizes in P
![]() |
Hexagon(D6h) | Pentagonal pyramid (C5v) | Octahedron(Oh) | Trigonal prism(D3h) | Johnson pentagonal pyramid J2 (C5v) | |
1 | Na(1) | 23.40 | 5.08 | 20.16 | 7.43 | 8.17 |
Fe(1) | 29.98 | 22.16 | 1.24 | 10.81 | 25.72 | |
Fe(2) | 33.01 | 28.36 | 0.27 | 15.92 | 31.56 | |
Fe(3) | 32.36 | 27.79 | 0.34 | 15.07 | 30.99 | |
Fe(4) | 33.62 | 24.46 | 1.88 | 11.75 | 27.89 | |
Fe(5) | 32.31 | 26.30 | 1.37 | 14.92 | 29.24 | |
2 | Na(1) | 22.49 | 6.98 | 18.90 | 5.81 | 10.61 |
Fe(1) | 33.54 | 22.05 | 1.75 | 10.98 | 26.13 | |
Fe(2) | 30.58 | 23.12 | 1.23 | 12.15 | 26.50 | |
Fe(3) | 30.38 | 22.21 | 1.25 | 10.70 | 25.87 | |
Fe(4) | 32.63 | 28.65 | 0.22 | 15.84 | 31.72 | |
Fe(5) | 32.43 | 27.16 | 0.34 | 14.82 | 30.63 |
Atoms | +2 | +3 | |
1 | Fe(1) | 2.64 | 3.10 |
Fe(3) | 2.64 | 3.13 | |
Fe(4) | 2.57 | 3.01 | |
Fe(5) | 2.62 | 3.06 | |
2 | Fe(1) | 2.71 | 3.18 |
Fe(2) | 2.70 | 3.16 | |
Fe(3) | 2.62 | 3.08 | |
Fe(5) | 2.62 | 3.11 |
With deep analysis of the interactions among molecules, we found a larger number of hydrogen bonds and π-π stacking interactions. As shown in Fig. 3(a), there are two types of hydrogen bonds between molecules, (C(8)–H(8)∙∙∙N(11), C(31)–H(31C)∙∙∙N(11), C(19)–H(19A)∙∙∙N(7), C(34)–H(34)∙∙∙N(7), C(41)–H(41C)∙∙∙N(10)) and C–H∙∙∙Cl (C(4)–H(4)∙∙∙Cl(1)), and two types of π-π stacking interactions (Cg5∙∙∙Cg5 and Cg4∙∙∙Cg8). The distances between two centers for Cg4∙∙∙Cg8 (Fig. 3(b)) and Cg5∙∙∙Cg5 (Fig. 3(c)) are 3.9628(3) and 3.6691(3) Å, respectively. The angles between the two centers for Cg4∙∙∙Cg8 and Cg5∙∙∙Cg5 are 5° and 0°, respectively. These rich intermolecular interactions lead to the formation of a three-dimensional supramolecular structure (Fig. 3(d)). The specific parameters of hydrogen bonds and π-π stacking interactions can be obtained from Table S1 and Table S2.
Complex 2 crystallizes in P
For 1 and 2, variable temperature magnetic susceptibilities (χMT) have been measured in the range of 1.8~300 K at 1000 Oe dc. The χMT values of 1 and 2 at 300 K are 5.41 and 7.00 cm3∙K∙mol-1, respectively, lower than the expected value of 17.51 cm3∙K∙mol-1 for four independent non-interacting FeIII (S = 5/2, g = 2) (Fig. 5(a) and 5(c)). As [Fe(CN)5NO]2- is diamagnetic, the exchange interaction between FeII and FeIII through the cyanide bridging ligand is negligible[35]. With decreasing the temperature, magnetic susceptibility values gradually decrease and reach 0.09 and 0.05 cm3∙K∙mol-1 for 1 and 2 at 1.8 K, respectively. This phenomenon reveals that the interaction between four FeIII ions is antiferromagnetic coupling. The experimental susceptibility data were fitted through PHI software[36] with the best-fitting parameters of J1 = –11.3, J2 = –16.4, J3 = –19.2 cm–1 for 1 and J1 = –21.8, J2 = –11.5 cm–1 for 2, respectively. The field depended magnetization (M) curves of 1 and 2 at different temperature are shown in Fig. 5(b) and 5(d), respectively. M values increase linearly at low field without reaching the saturation at highfield region. The curves of M vs H/T at different temperature also does not overlap, suggesting the presence of magnetic anisotropy. In order to further study the magnetic properties of 1 and 2, we measured the ac magnetic susceptibility at 0 and 2000 Oe dc fields, respectively, with the frequency range of 1~999 Hz and temperature range from 2 to 12 K. The analysis of ac magnetic susceptibilities finds that the in-phase (χ'M) and out-of-phase (χ"M) of 1 and 2 do not show obvious frequency dependence at two fields. Here, only 2000 Oe field-induced χ'M and χ"M plots are given in Fig. 6. A reason likely derives from the structural symmetry, which offsets the magnetic coupling interaction and makes the title complexes exhibit unsatisfactory magnetic behavior[37].
We obtained two novel polynuclear Fe complexes, where four Fe ions and one Na ion exhibited a trigonal bipyramidal arrangement with three Fe ions locating in the triangle core, and one Fe and one Na ions occupying the apical positions. The metal skeleton is also described as a "boat-like" core constructed through three Fe and one Na ions with the fourth Fe ion acting as the "paddle" or "ship man". The "hull bottom" contains a metallamacrocycle with metallacrown-like motif. The analogue of metallacrown can be recognized as an 8-MC-4 type with adjacent metal connected by O atom to exhibit [-M-O-] repeat unit. In 1, a three-dimensional structure is constructed by hydrogen bonds and π-π stacking interactions. 2 also represents a three-dimensional structure, in which the involved supramolecular interactions consist of hydrogen bonds. Magnetic studies have revealed the presence of antiferromagnetic coupling between metal centers, and the structural symmetry likely offset the magnetic coupling interaction.
Nkabyo, H. A.; Barnard, I.; Koch, K. R.; Luckay, R. C. Recent advances in the coordination and supramolecular chemistry of monopodal and bipodal acylthiourea-based ligands. Coord. Chem. Rev. 2021, 427, 213588‒213611.
doi: 10.1016/j.ccr.2020.213588
Bernot, K.; Daiguebonne, C.; Calvez, G.; Yan, S.; Guillou, O. A journey in lanthanide coordination chemistry: from evaporable dimers to magnetic materials and luminescent devices. Acc. Chem. Res. 2021, 54, 427‒440.
doi: 10.1021/acs.accounts.0c00684
Saha, K.; Roy, D. K.; Dewhurst, R. D.; Ghosh, S.; Braunschweig, H. Recent advances in the synthesis and reactivity of transition metal σ-borane/borate complexes. Acc. Chem. Res. 2021, 54, 1260‒1273.
doi: 10.1021/acs.accounts.0c00819
Tsave, O.; Halevas, E.; Yavropoulou, M. P.; Papadimitriou, A. K.; Yovos, J. G.; Hatzidimitriou, A. Structure-specific adipogenic capacity of novel, well-defined ternary Zn(II)-Schiff base materials. Biomolecular correlations in zinc-induced differentiation of 3T3-L1 pre-adipocytes to adipocytes. J. Inorg. Biochem. 2015, 152, 123‒137.
doi: 10.1016/j.jinorgbio.2015.08.014
Yang, H.; Liu, Z.; Meng, Y.; Zeng, S.; Dou, J. A bell-like 15-metallacrown-5 complex from flexible H2glyha ligand: synthesis, structure and filed-induced slow magnetic relaxation. J. Mol. Struct. 2020, 1221, 128822‒128837.
doi: 10.1016/j.molstruc.2020.128822
Wei, L. Q.; Li, B. W.; Hu, S.; Zeng, M. H. Controlled assemblies of hepta- and trideca-coii clusters by a rational derivation of salicylalde Schiff bases: microwave-assisted synthesis, crystal structures, ESI-MS solution analysis and magnetic properties. CrystEngComm. 2011, 13, 510‒516.
doi: 10.1039/C0CE00085J
Mayans, J.; Font-Bardia, M.; Escuer, A. Triple halide bridges in chiral Mn2IIMn6IIINa2I cages: structural and magnetic characterization. Inorg. Chem. 2018, 57, 926‒929.
doi: 10.1021/acs.inorgchem.7b03125
Yang, W.; Yang, H.; Zeng, S.; Li, D. C.; Dou, J. Unprecedented family of heterometallic LnIII[18-metallacrown-6] complexes: syntheses, structures, and magnetic properties. Dalton Trans. 2017, 46, 13027‒13034.
doi: 10.1039/C7DT02735D
Zhang, Y.; Wu, J.; Shen, S.; Liu, Z.; Tang, J. Coupling Dy3 triangles into hexanuclear dysprosium(III) clusters: syntheses, structures and magnetic properties. Polyhedron 2018, 150, 40‒46.
doi: 10.1016/j.poly.2018.04.042
Zou, H. H.; Wang, R.; Chen, Z. L.; Liu, D. C.; Liang, F. P. Series of edge-sharing bi-triangle Ln4 clusters with a µ4-NO3− bridge: syntheses, structures, luminescence, and the SMM behavior of the Dy4 analogue. Dalton Trans. 2014, 43, 2581‒2587.
doi: 10.1039/C3DT52316K
Peng, Y.; Mereacre, V.; Baniodeh, A.; Lan, Y.; Schlageter, M.; Kostakis, G. E. Effect of ligand field tuning on the SMM behavior for three related alkoxide-bridged dysprosium dimers. Inorg. Chem. 2016, 55, 68‒74.
doi: 10.1021/acs.inorgchem.5b01793
Lu, Z.; Fan, T.; Guo, W.; Lu, J.; Fan, C. Synthesis, structure and magnetism of three cubane Cu(II) and Ni(II) complexes based on flexible Schiff-base ligands. Inorg. Chim. Acta 2013, 400, 191‒196.
doi: 10.1016/j.ica.2013.02.030
Wang, Y. N.; Zhang, P.; Yu, J. H.; Xu, J. Q. 4-(4-carboxyphenoxy)phthalate-based coordination polymers and their application in sensing nitrobenzene. Dalton Trans. 2015, 44, 1655‒1663.
doi: 10.1039/C4DT02762K
Hoshino, N.; Ako, A. M.; Powell, A. K.; Oshio, H. Molecular magnets containing wheel motifs. Inorg. Chem. 2009, 48, 3396‒3407.
doi: 10.1021/ic801776w
Chan, M. H. Y.; Leung, Y. L.; Yam, W. W. Controlling self-assembly mechanisms through rational molecular design in oligo(p-phen-yleneethynylene)-containing alkynylplatinum(II) 2, 6-bis(n-alkylbenzimidazol-2΄-yl)pyridine amphiphiles. J. Am. Chem. Soc. 2018, 140, 7637−7646.
doi: 10.1021/jacs.8b03628
Sessoli, R.; Tsai, H. L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting, K. High-spin molecules: [Mn12O12(O2Cr)16(H2O)4]. J. Am. Chem. Soc. 1993, 115, 1804−1816.
doi: 10.1021/ja00058a027
Chow, C. Y.; Trivedi, E. R.; Pecoraro, V. L.; Zaleski, C. M. Heterometallic mixed 3d-4f metallacrowns: structural versatility, luminescence, and molecular magnetism. Comment Inorg. Chem. 2015, 35, 1−40.
doi: 10.1080/02603594.2014.974805
Noord, C. V.; Kampf, J. W.; Pecoraro, V. L. Preparation of resolved fourfold symmetric amphiphilic helices using chiral metallacrown building blocks. Angew. Chem. Int. Ed. 2002, 41, 4667−70.
doi: 10.1002/anie.200290010
Deng, M.; Yang, P.; Liu, X.; Xia, B.; Chen, Z.; Ling, Y. End-end connection pattern of trinuclear-triangular copper cluster for construction of two metal-organic frameworks: syntheses, structures, magnetic and gas adsorption properties. Cryst. Growth Des. 2015, 153, 5794−5799.
Xu, H. B.; Wang, B. W.; Pan, F.; Wang, Z. M.; Gao, S. Stringing oxo-centered trinuclear [Mn3IIIO] units into single-chain magnets with formate or azide linkers. Angew. Chem. Int. Ed. 2007, 119, 7532−7536.
doi: 10.1002/ange.200702648
Lah, M. S.; Pecoraro, V. L. Isolation and characterization of {MnII[MnIII(salicylhydroximate)]4(acetate)2(DMF)6∙cntdot∙2DMF: an inorganic analog of M2+[12-crown-4]. J. Am. Chem. Soc. 1989, 111, 7258−7289.
doi: 10.1021/ja00200a054
Cao, F.; Wang, S.; Li, D. Family of mixed 3d-4f dimeric 14-metallacrown-5 compounds: syntheses, structures, and magnetic properties. Inorg. Chem. 2013, 52, 10747−10755.
doi: 10.1021/ic3025952
Nguyen, T. N.; Chow, C. Y.; Eliseeva, S. V.; Trivedi, E. R.; Kampf, J. W.; Martini, I. One-step assembly of visible and near-infrared emitting metallacrown dimers using a bifunctional linker. Chem. Eur. J. 2018, 24, 1031−1035.
doi: 10.1002/chem.201703911
Woo, S. Y.; Mallah, T.; Pecoraro, V.; Kociak, M.; Zobelli, A. Luminescence from isolated Tb-based metallacrown molecular complexes on h -BN. Microsc. Microanal. 2019, 25, 604−605.
doi: 10.1017/S1431927619003751
Muravyeva, M. S.; Zabrodina, G. S.; Samsonov, M. A.; Kluev, E. A.; Khrapichev, A. A.; Katkova, M. A.; Mukhina, I. V. Water-soluble tetraaqua Ln(III) glycinehydroximate 15-metallacrown-5 complexes towards potential MRI contrast agents for ultra-high magnetic field. Polyhedron 2016, 114, 165−171.
doi: 10.1016/j.poly.2015.11.033
Chow, C. Y.; Guillot, R.; Rivière, E.; Kampf, J. W.; Pecoraro, V. L. Synthesis and magnetic characterization of Fe(III)-based 9-metallacrown-3 complexes which exhibit magnetorefrigerant properties. Inorg. Chem. 2016, 55, 10238–10247.
doi: 10.1021/acs.inorgchem.6b01404
Happ, P.; Rentschler, E. Enforcement of a high-spin ground state for the first 3d heterometallic 12-metallacrown-4 complex. Dalton Trans. 2014, 43, 15308–15312.
doi: 10.1039/C4DT02275K
Jin, C.; Yu, H.; Jin, L.; Wu, L.; Zhou, Z. Esterification and isolation of the carboxylic acid with salicyl-bis-hydrazide via coordination of iron(III) 18-metallacrown-6 complex. J. Coord. Chem. 2010, 63, 3772–3782.
doi: 10.1080/00958972.2010.520706
Jin, C. Z.; Wu, S. X.; Jin, L. F.; Wu, L. M.; Zhang, J. Esterification of the ligand: synthesis, characterization and crystal structure of an iron(III) 18-metallacrown-6 complex with methyl 4-(5-chlorosalicylhydrazinocarbonyl) butyrate. Inorg. Chim. Acta 2012, 383, 20–25.
doi: 10.1016/j.ica.2011.10.021
Thorarinsdottir, A. E.; Gaudette, A. I.; Harris, T. D. Spin-crossover and high-spin iron(II) complexes as chemical shift 19f magnetic resonance thermometers. Chem. Sci. 2017, 8, 2448–2456.
doi: 10.1039/C6SC04287B
Phonsri, W.; Martinez, V.; Davies, C. G.; Jameson, G.; Moubaraki, B.; Murray, K. S. Ligand effects in a heteroleptic bis-tridentate iron(III) spin crossover complex showing a very high 1/2 value. Chem. Commun. 2016, 52, 1443–1446.
doi: 10.1039/C5CC08701E
Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112‒122.
Alvarez, S.; Alemany, P.; Casanova, D.; Cirera, J.; Llunell, M.; Avnir, D. Shape maps and polyhedral interconversion paths in transition metal chemistry. Coord. Chem. Rev. 2005, 249, 1693–1708.
doi: 10.1016/j.ccr.2005.03.031
Liu, W. T.; Thorp, H. H. Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. 2. refined distances and other enzymes. Inorg. Chem. 1993, 32, 4102–4105.
doi: 10.1021/ic00071a023
Yuan, A. H.; Lu, L. D.; Shen, X. P.; Chen, L. Z.; Yu, K. B. Synthesis, crystal structure and magnetic properties of a two-dimensional mixed-valence assembly [Fe(salen)]2[Fe(CN)5NO]. Transit. Metal Chem. 2003, 28, 163–167.
doi: 10.1023/A:1022977403373
Chilton, N. F.; Anderson, R. P.; Turner, L. D.; Soncini, A.; Murray, K. S. PHI: a powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes. J. Comput. Chem. 2013, 34, 1164–1175.
Widita, R.; Muhammady, S.; Prasetiyawati, R. D.; Marlina, R.; Darma, Y. Revisiting the structural, electronic, and magnetic properties of (LaO)MnAs: effect of hubbard correction and origin of mott-insulating behavior. ACS Omega. 2021, 6, 4440–4447.
doi: 10.1021/acsomega.0c05889
Nkabyo, H. A.; Barnard, I.; Koch, K. R.; Luckay, R. C. Recent advances in the coordination and supramolecular chemistry of monopodal and bipodal acylthiourea-based ligands. Coord. Chem. Rev. 2021, 427, 213588‒213611.
doi: 10.1016/j.ccr.2020.213588
Bernot, K.; Daiguebonne, C.; Calvez, G.; Yan, S.; Guillou, O. A journey in lanthanide coordination chemistry: from evaporable dimers to magnetic materials and luminescent devices. Acc. Chem. Res. 2021, 54, 427‒440.
doi: 10.1021/acs.accounts.0c00684
Saha, K.; Roy, D. K.; Dewhurst, R. D.; Ghosh, S.; Braunschweig, H. Recent advances in the synthesis and reactivity of transition metal σ-borane/borate complexes. Acc. Chem. Res. 2021, 54, 1260‒1273.
doi: 10.1021/acs.accounts.0c00819
Tsave, O.; Halevas, E.; Yavropoulou, M. P.; Papadimitriou, A. K.; Yovos, J. G.; Hatzidimitriou, A. Structure-specific adipogenic capacity of novel, well-defined ternary Zn(II)-Schiff base materials. Biomolecular correlations in zinc-induced differentiation of 3T3-L1 pre-adipocytes to adipocytes. J. Inorg. Biochem. 2015, 152, 123‒137.
doi: 10.1016/j.jinorgbio.2015.08.014
Yang, H.; Liu, Z.; Meng, Y.; Zeng, S.; Dou, J. A bell-like 15-metallacrown-5 complex from flexible H2glyha ligand: synthesis, structure and filed-induced slow magnetic relaxation. J. Mol. Struct. 2020, 1221, 128822‒128837.
doi: 10.1016/j.molstruc.2020.128822
Wei, L. Q.; Li, B. W.; Hu, S.; Zeng, M. H. Controlled assemblies of hepta- and trideca-coii clusters by a rational derivation of salicylalde Schiff bases: microwave-assisted synthesis, crystal structures, ESI-MS solution analysis and magnetic properties. CrystEngComm. 2011, 13, 510‒516.
doi: 10.1039/C0CE00085J
Mayans, J.; Font-Bardia, M.; Escuer, A. Triple halide bridges in chiral Mn2IIMn6IIINa2I cages: structural and magnetic characterization. Inorg. Chem. 2018, 57, 926‒929.
doi: 10.1021/acs.inorgchem.7b03125
Yang, W.; Yang, H.; Zeng, S.; Li, D. C.; Dou, J. Unprecedented family of heterometallic LnIII[18-metallacrown-6] complexes: syntheses, structures, and magnetic properties. Dalton Trans. 2017, 46, 13027‒13034.
doi: 10.1039/C7DT02735D
Zhang, Y.; Wu, J.; Shen, S.; Liu, Z.; Tang, J. Coupling Dy3 triangles into hexanuclear dysprosium(III) clusters: syntheses, structures and magnetic properties. Polyhedron 2018, 150, 40‒46.
doi: 10.1016/j.poly.2018.04.042
Zou, H. H.; Wang, R.; Chen, Z. L.; Liu, D. C.; Liang, F. P. Series of edge-sharing bi-triangle Ln4 clusters with a µ4-NO3− bridge: syntheses, structures, luminescence, and the SMM behavior of the Dy4 analogue. Dalton Trans. 2014, 43, 2581‒2587.
doi: 10.1039/C3DT52316K
Peng, Y.; Mereacre, V.; Baniodeh, A.; Lan, Y.; Schlageter, M.; Kostakis, G. E. Effect of ligand field tuning on the SMM behavior for three related alkoxide-bridged dysprosium dimers. Inorg. Chem. 2016, 55, 68‒74.
doi: 10.1021/acs.inorgchem.5b01793
Lu, Z.; Fan, T.; Guo, W.; Lu, J.; Fan, C. Synthesis, structure and magnetism of three cubane Cu(II) and Ni(II) complexes based on flexible Schiff-base ligands. Inorg. Chim. Acta 2013, 400, 191‒196.
doi: 10.1016/j.ica.2013.02.030
Wang, Y. N.; Zhang, P.; Yu, J. H.; Xu, J. Q. 4-(4-carboxyphenoxy)phthalate-based coordination polymers and their application in sensing nitrobenzene. Dalton Trans. 2015, 44, 1655‒1663.
doi: 10.1039/C4DT02762K
Hoshino, N.; Ako, A. M.; Powell, A. K.; Oshio, H. Molecular magnets containing wheel motifs. Inorg. Chem. 2009, 48, 3396‒3407.
doi: 10.1021/ic801776w
Chan, M. H. Y.; Leung, Y. L.; Yam, W. W. Controlling self-assembly mechanisms through rational molecular design in oligo(p-phen-yleneethynylene)-containing alkynylplatinum(II) 2, 6-bis(n-alkylbenzimidazol-2΄-yl)pyridine amphiphiles. J. Am. Chem. Soc. 2018, 140, 7637−7646.
doi: 10.1021/jacs.8b03628
Sessoli, R.; Tsai, H. L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting, K. High-spin molecules: [Mn12O12(O2Cr)16(H2O)4]. J. Am. Chem. Soc. 1993, 115, 1804−1816.
doi: 10.1021/ja00058a027
Chow, C. Y.; Trivedi, E. R.; Pecoraro, V. L.; Zaleski, C. M. Heterometallic mixed 3d-4f metallacrowns: structural versatility, luminescence, and molecular magnetism. Comment Inorg. Chem. 2015, 35, 1−40.
doi: 10.1080/02603594.2014.974805
Noord, C. V.; Kampf, J. W.; Pecoraro, V. L. Preparation of resolved fourfold symmetric amphiphilic helices using chiral metallacrown building blocks. Angew. Chem. Int. Ed. 2002, 41, 4667−70.
doi: 10.1002/anie.200290010
Deng, M.; Yang, P.; Liu, X.; Xia, B.; Chen, Z.; Ling, Y. End-end connection pattern of trinuclear-triangular copper cluster for construction of two metal-organic frameworks: syntheses, structures, magnetic and gas adsorption properties. Cryst. Growth Des. 2015, 153, 5794−5799.
Xu, H. B.; Wang, B. W.; Pan, F.; Wang, Z. M.; Gao, S. Stringing oxo-centered trinuclear [Mn3IIIO] units into single-chain magnets with formate or azide linkers. Angew. Chem. Int. Ed. 2007, 119, 7532−7536.
doi: 10.1002/ange.200702648
Lah, M. S.; Pecoraro, V. L. Isolation and characterization of {MnII[MnIII(salicylhydroximate)]4(acetate)2(DMF)6∙cntdot∙2DMF: an inorganic analog of M2+[12-crown-4]. J. Am. Chem. Soc. 1989, 111, 7258−7289.
doi: 10.1021/ja00200a054
Cao, F.; Wang, S.; Li, D. Family of mixed 3d-4f dimeric 14-metallacrown-5 compounds: syntheses, structures, and magnetic properties. Inorg. Chem. 2013, 52, 10747−10755.
doi: 10.1021/ic3025952
Nguyen, T. N.; Chow, C. Y.; Eliseeva, S. V.; Trivedi, E. R.; Kampf, J. W.; Martini, I. One-step assembly of visible and near-infrared emitting metallacrown dimers using a bifunctional linker. Chem. Eur. J. 2018, 24, 1031−1035.
doi: 10.1002/chem.201703911
Woo, S. Y.; Mallah, T.; Pecoraro, V.; Kociak, M.; Zobelli, A. Luminescence from isolated Tb-based metallacrown molecular complexes on h -BN. Microsc. Microanal. 2019, 25, 604−605.
doi: 10.1017/S1431927619003751
Muravyeva, M. S.; Zabrodina, G. S.; Samsonov, M. A.; Kluev, E. A.; Khrapichev, A. A.; Katkova, M. A.; Mukhina, I. V. Water-soluble tetraaqua Ln(III) glycinehydroximate 15-metallacrown-5 complexes towards potential MRI contrast agents for ultra-high magnetic field. Polyhedron 2016, 114, 165−171.
doi: 10.1016/j.poly.2015.11.033
Chow, C. Y.; Guillot, R.; Rivière, E.; Kampf, J. W.; Pecoraro, V. L. Synthesis and magnetic characterization of Fe(III)-based 9-metallacrown-3 complexes which exhibit magnetorefrigerant properties. Inorg. Chem. 2016, 55, 10238–10247.
doi: 10.1021/acs.inorgchem.6b01404
Happ, P.; Rentschler, E. Enforcement of a high-spin ground state for the first 3d heterometallic 12-metallacrown-4 complex. Dalton Trans. 2014, 43, 15308–15312.
doi: 10.1039/C4DT02275K
Jin, C.; Yu, H.; Jin, L.; Wu, L.; Zhou, Z. Esterification and isolation of the carboxylic acid with salicyl-bis-hydrazide via coordination of iron(III) 18-metallacrown-6 complex. J. Coord. Chem. 2010, 63, 3772–3782.
doi: 10.1080/00958972.2010.520706
Jin, C. Z.; Wu, S. X.; Jin, L. F.; Wu, L. M.; Zhang, J. Esterification of the ligand: synthesis, characterization and crystal structure of an iron(III) 18-metallacrown-6 complex with methyl 4-(5-chlorosalicylhydrazinocarbonyl) butyrate. Inorg. Chim. Acta 2012, 383, 20–25.
doi: 10.1016/j.ica.2011.10.021
Thorarinsdottir, A. E.; Gaudette, A. I.; Harris, T. D. Spin-crossover and high-spin iron(II) complexes as chemical shift 19f magnetic resonance thermometers. Chem. Sci. 2017, 8, 2448–2456.
doi: 10.1039/C6SC04287B
Phonsri, W.; Martinez, V.; Davies, C. G.; Jameson, G.; Moubaraki, B.; Murray, K. S. Ligand effects in a heteroleptic bis-tridentate iron(III) spin crossover complex showing a very high 1/2 value. Chem. Commun. 2016, 52, 1443–1446.
doi: 10.1039/C5CC08701E
Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112‒122.
Alvarez, S.; Alemany, P.; Casanova, D.; Cirera, J.; Llunell, M.; Avnir, D. Shape maps and polyhedral interconversion paths in transition metal chemistry. Coord. Chem. Rev. 2005, 249, 1693–1708.
doi: 10.1016/j.ccr.2005.03.031
Liu, W. T.; Thorp, H. H. Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. 2. refined distances and other enzymes. Inorg. Chem. 1993, 32, 4102–4105.
doi: 10.1021/ic00071a023
Yuan, A. H.; Lu, L. D.; Shen, X. P.; Chen, L. Z.; Yu, K. B. Synthesis, crystal structure and magnetic properties of a two-dimensional mixed-valence assembly [Fe(salen)]2[Fe(CN)5NO]. Transit. Metal Chem. 2003, 28, 163–167.
doi: 10.1023/A:1022977403373
Chilton, N. F.; Anderson, R. P.; Turner, L. D.; Soncini, A.; Murray, K. S. PHI: a powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes. J. Comput. Chem. 2013, 34, 1164–1175.
Widita, R.; Muhammady, S.; Prasetiyawati, R. D.; Marlina, R.; Darma, Y. Revisiting the structural, electronic, and magnetic properties of (LaO)MnAs: effect of hubbard correction and origin of mott-insulating behavior. ACS Omega. 2021, 6, 4440–4447.
doi: 10.1021/acsomega.0c05889
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
Long TANG , Yaxin BIAN , Luyuan CHEN , Xiangyang HOU , Xiao WANG , Jijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180
Xiaxia LIU , Xiaofang MA , Luxia GUO , Xianda HAN , Sisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269
Zhenghua ZHAO , Qin ZHANG , Yufeng LIU , Zifa SHI , Jinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342
Weizhong LING , Xiangyun CHEN , Wenjing LIU , Yingkai HUANG , Yu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
Xiumei LI , Yanju HUANG , Bo LIU , Yaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109
Xiumei LI , Linlin LI , Bo LIU , Yaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273
Chen Chen , Jinzhou Zheng , Chaoqin Chu , Qinkun Xiao , Chaozheng He , Xi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739
Tao Yu , Vadim A. Soloshonok , Zhekai Xiao , Hong Liu , Jiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901
Chao LIU , Jiang WU , Zhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Shuwen SUN , Gaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368
Huirong LIU , Hao XU , Dunru ZHU , Junyong ZHANG , Chunhua GONG , Jingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066
Jimin HOU , Mengyang LI , Chunhua GONG , Shaozhuang ZHANG , Caihong ZHAN , Hao XU , Jingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348
Zhaodong WANG . In situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268
Lulu DONG , Jie LIU , Hua YANG , Yupei FU , Hongli LIU , Xiaoli CHEN , Huali CUI , Lin LIU , Jijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
Jiakun Bai , Junhui Jia , Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323