Mechanism Study of Aliskiren and Its Analogues by Molecular Dynamic Simulation
- Corresponding author: Rong ZHANG, zhangr@gdpu.edu.cn
Citation: Wen-Li YAN, Zhen LIANG, Xing-Lian YU, Rong ZHANG. Mechanism Study of Aliskiren and Its Analogues by Molecular Dynamic Simulation[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220317. doi: 10.14102/j.cnki.0254-5861.2011-3308
Carey, R. M. The intrarenal renin-angiotensin system in hypertension. Adv. Chronic Kidney Dis. 2015, 22, 204-210.
doi: 10.1053/j.ackd.2014.11.004
Kangussu, L. M.; Marzano, L. A. S.; Souza, C. F.; Dantas, C. C.; Miranda, A. S.; Simoes, E. S. The renin-angiotensin system and the cerebrovascular diseases: experimental and clinical evidence. Protein Pept. Lett. 2020, 27, 463-475.
Te-Riet, L.; van-Esch, J. H.; Roks, A. J.; van-den-Meiracker, A. H.; Danser, A. H. Hypertension: renin-angiotensin-aldosterone system alterations. Circ. Res. 2015, 116, 960-975.
doi: 10.1161/CIRCRESAHA.116.303587
Nguyen, G.; Delarue, F.; Burckle, C.; Bouzhir, L.; Giller, T.; Sraer, J. D. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J. Clin. Invest. 2002, 109, 1417-1427.
doi: 10.1172/JCI0214276
Giani, J. F.; Janjulia, T.; Taylor, B.; Bernstein, E. A.; Shah, K.; Shen, X. Z.; McDonough, A. A.; Bernstein, K. E.; Gonzalez-Villalobos, R. A. Renal generation of angiotensin II and the pathogenesis of hypertension. Curr. Hypertens Rep. 2014, 16, 477-5.
doi: 10.1007/s11906-014-0477-1
Ramya, K.; Suresh, R.; Kumar, H. Y.; Kumar, B. R. P.; Murthy, N. B. S. Decades-old renin inhibitors are still struggling to find a niche in antihypertensive therapy. A fleeting look at the old and the promising new molecules. Bioorg. Med. Chem. 2020, 28, 115466-12.
doi: 10.1016/j.bmc.2020.115466
Wright, J. M.; Musini, V. M.; Gill, R. First-line drugs for hypertension. Cochrane Database Syst. Rev. 2010, 128, 47-52.
Neal, B.; MacMahon, S.; Chapman, N. Blood pressure lowering treatment trialists effects of ACE inhibitors, calcium antagonists, and other blood-pressure-lowering drugs: results of prospectively designed overviews of randomised trials. Blood pressure lowering treatment trialists' collaboration. Lancet 2000, 356, 1955-1964.
doi: 10.1016/S0140-6736(00)03307-9
Hamet, P. Direct renin inhibition: mechanistic advantages and disadvantages compared with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers. Can. J. Cardiol. 2008, 24, 44-49.
doi: 10.1016/S0828-282X(08)71038-9
Angeli, F.; Reboldi, G.; Mazzotta, G.; Poltronieri, C.; Garofoli, M.; Ramundo, E.; Biadetti, A.; Verdecchia, P. Safety and efficacy of aliskiren in the treatment of hypertension and associated clinical conditions. Curr. Drug Saf. 2012, 7, 76-85.
doi: 10.2174/157488612800492771
Rahuel, J.; Rasetti, V.; Maibaum, J.; Rueger, H.; Goschke, R.; Cohen, N. C.; Stutz, S.; Cumin, F.; Fuhrer, W.; Wood, J. M.; Grutter, M. G. Structure-based drug design: the discovery of novel nonpeptide orally active inhibitors of human renin. Chem. Biol. 2000, 7, 493-504.
doi: 10.1016/S1074-5521(00)00134-4
Pantzaris, N. D.; Karanikolas, E.; Tsiotsios, K.; Velissaris, D. Renin inhibition with aliskiren: a decade of clinical experience. J. Clin. Med. 2017, 6, 61-80.
doi: 10.3390/jcm6060061
Ichihara, A.; Sakoda, M.; Kurauchi-Mito, A.; Narita, T.; Kinouchi, K.; Bokuda, K.; Itoh, H. New approaches to blockade of the renin-angiotensin-aldosterone system: characteristics and usefulness of the direct renin inhibitor aliskiren. J. Pharmacol. Sci. 2010, 113, 296-300.
doi: 10.1254/jphs.10R04FM
Loganathan, L.; Muthusamy, K. Investigation of drug interaction potentials and binding modes on direct renin inhibitors: a computational modeling studies. Lett. Drug Des. Discov. 2019, 16, 919-938.
doi: 10.2174/1570180815666180827113622
Politi, A.; Durdagi, S.; Moutevelis-Minakakis, P.; Kokotos, G.; Papadopoulos, M. G.; Mavromoustakos, T. Application of 3D QSAR comfa/comsia and in silico docking studies on novel renin inhibitors against cardiovascular diseases. Eur. J. Med. Chem. 2009, 44, 3703-3711.
doi: 10.1016/j.ejmech.2009.03.040
Al-Nadaf, A. H.; Taha, M. O. Discovery of new renin inhibitory leads via sequential pharmacophore modeling, QSAR analysis, in silico screening and in vitro evaluation. J. Mol. Graph. Model 2011, 29, 843-864.
doi: 10.1016/j.jmgm.2011.02.001
Sanoski, C. A. Aliskiren: an oral direct renin inhibitor for the treatment of hypertension. Pharmacotherapy 2009, 29, 193-212.
doi: 10.1592/phco.29.2.193
Morisawa, N.; Sugano, N.; Yamakawa, T.; Kuriyama, S.; Yokoo, T. Successful long-term effects of direct renin inhibitor aliskiren in a patient with atherosclerotic renovascular hypertension. CEN Case Rep. 2017, 6, 66-73.
doi: 10.1007/s13730-016-0246-x
Kapetanovic, I. M. Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chem. Biol. Interact. 2008, 171, 165-176.
doi: 10.1016/j.cbi.2006.12.006
Subramanian, G. Computational modeling and design of renin inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 460-465.
doi: 10.1016/j.bmcl.2012.11.059
Quezada, G. R.; Piceros, E.; Robles, P; Moraga, C.; Jeldres, R. I. Polyacrylic acid to improve flotation tailings management: understanding the chemical interactions through molecular dynamics. Metals. 2021, 11, 987-993.
doi: 10.3390/met11060987
Dimitropoulos, N.; Papakyriakou, A.; Dalkas, G. A.; Sturrock, E. D.; Spyroulias G. A. A computational approach to the study of the binding mode of dual ACE/NEP inhibitors. J. Chem. Inf. Model 2010, 50, 388-396.
doi: 10.1021/ci9005047
Lam, P. Y.; Jadhav, P. K.; Eyermann, C. J.; Hodge, C. N.; Ru, Y.; Bacheler, L. T.; Meek, J. L.; Otto, M. J.; Rayner, M. M.; Wong, Y. N. Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science 1994, 263, 380-4.
doi: 10.1126/science.8278812
Singh, A.; Paliwal, S. K.; Sharma, M.; Mittal, A.; Sharma, S.; Sharma, J. P. In silico and in vitro screening to identify structurally diverse non-azole CYP51 inhibitors as potent antifungal agent. J. Mol. Graph. Model 2016, 63, 1-7.
doi: 10.1016/j.jmgm.2015.10.014
Kairys, V.; Baranauskiene, L.; Kazlauskiene, M.; Matulis, D.; Kazlauskas, E. Binding affinity in drug design: experimental and computational techniques. Expert. Opin. Drug Discov. 2019, 14, 755-768.
doi: 10.1080/17460441.2019.1623202
Zhu, G. F.; Wang, Y.; Liu, J.; Wang, H.; Xi, L.; Du, L. F. Interaction between ginkgolic acid and human serum albumin by spectroscopy and molecular modeling methods. J. Solution Chem. 2014, 43, 1232-1249.
doi: 10.1007/s10953-014-0200-5
Tang, J. H.; Liang, G. B.; Zheng, C. Z.; Lian, N. Investigation on the binding behavior of ellagic acid to human serum albumin in aqueous solution. J. Solution Chem. 2013, 42, 226-238.
doi: 10.1007/s10953-012-9938-9
Wang, Z. Z.; Ma, C. Y.; Yang, J.; Gao, Q. B.; Sun, X. D.; Ding, L. N.; Liu, H. M. Investigating the binding mechanism of (4-cyanophenyl) glycine derivatives as reversible LSD1 by 3D-QSAR, molecular docking and molecular dynamics simulations. J. Mol. Struct. 2019, 1175, 698-707.
doi: 10.1016/j.molstruc.2018.08.029
Yan, W.; Lin, G.; Zhang, R.; Liang, Z.; Wu, L.; Wu, W. Studies on molecular mechanism between ACE and inhibitory peptides in different bioactivities by 3D-QSAR and MD simulations. J. Mol. Liquids 2020, 304, 112702-11.
doi: 10.1016/j.molliq.2020.112702
Geng, S.; Jiang, Z.; Ma, H.; Wang, Y.; Liu, B.; Liang, G. Interaction mechanism of flavonoids and bovine beta-lactoglobulin: experimental and molecular modelling studies. Food Chem. 2020, 312, 126066-8.
doi: 10.1016/j.foodchem.2019.126066
Lv, Y.; Wang, Y.; Zheng, X.; Liang, G. Reveal the interaction mechanism of five old drugs targeting VEGFR2 through computational simulations. J. Mol. Graph. Model 2020. 96, 107538-9.
doi: 10.1016/j.jmgm.2020.107538
Kouza, M.; Hu, C. K.; Zung, H.; Li, M. S. Protein mechanical unfolding: importance of non-native interactions. J. Chem. Physics 2009, 131, 215103-6.
doi: 10.1063/1.3272275
Abraham, M. J.; Gready, J. E. Optimization of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5. J. Comput. Chem. 2011, 32, 2031-2040.
doi: 10.1002/jcc.21773
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Minghao Hu , Tianci Xie , Yuqiang Hu , Longjie Li , Ting Wang , Tongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
Qihan Lin , Jiabin Xing , Yue-Yang Liu , Gang Wu , Shi-Jia Liu , Hui Wang , Wei Zhou , Zhan-Ting Li , Dan-Wei Zhang . taBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119
Zhikang Wu , Guoyong Dai , Qi Li , Zheyu Wei , Shi Ru , Jianda Li , Hongli Jia , Dejin Zang , Mirjana Čolović , Yongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061
Jinyan Zhang , Fen Liu , Qian Jin , Xueyi Li , Qiong Zhan , Mu Chen , Sisi Wang , Zhenlong Wu , Wencai Ye , Lei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881
Zixi Zou , Jingyuan Wang , Yian Sun , Qian Wang , Da-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972
Ruonan Guo , Heng Zhang , Changsheng Guo , Ningqing Lv , Beidou Xi , Jian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Wenzhong Zhang , Zirui Yan , Lingcheng Chen , Yi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582
Hai-Ling Wang , Zhong-Hong Zhu , Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372