Citation: Wen-Li YAN, Zhen LIANG, Xing-Lian YU, Rong ZHANG. Mechanism Study of Aliskiren and Its Analogues by Molecular Dynamic Simulation[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220317. doi: 10.14102/j.cnki.0254-5861.2011-3308 shu

Mechanism Study of Aliskiren and Its Analogues by Molecular Dynamic Simulation

  • Corresponding author: Rong ZHANG, zhangr@gdpu.edu.cn
  • Received Date: 11 July 2021
    Accepted Date: 29 October 2021

    Fund Project: Talents Introduction Foundation for Universities of Guangdong Province GD 2011the Science and Technology Planning Project of Guangzhou 2013J4100071

Figures(10)

  • The further interaction mechanism towards renin inhibitors was revealed by comparison of renin with different active inhibitors in aqueous solution. Molecular docking and molecular dynamics (MD) simulations were combined for the research. The results reflected that electrostatic and hydrophobic effects were the major interactions for renin inhibitors forming complexes with renin, and some residues were the key to the formation of complex, especially Asp38/Asp226. The factor of different activities performed in renin inhibitors was illustrated as well. For the higher active renin inhibitor, it possessed stronger affinity with renin, and its detected conformation was more extended to fit for the key binding site. This promoted the capacity to form special interactions with the key residues. While conformation of the lower active renin inhibitor performed folded in the active site of renin, the interactions to the important pocket S3sp was restricted, resulting in undesirable bioactivity.
  • 加载中
    1. [1]

      Carey, R. M. The intrarenal renin-angiotensin system in hypertension. Adv. Chronic Kidney Dis. 2015, 22, 204-210.  doi: 10.1053/j.ackd.2014.11.004

    2. [2]

      Kangussu, L. M.; Marzano, L. A. S.; Souza, C. F.; Dantas, C. C.; Miranda, A. S.; Simoes, E. S. The renin-angiotensin system and the cerebrovascular diseases: experimental and clinical evidence. Protein Pept. Lett. 2020, 27, 463-475.

    3. [3]

      Te-Riet, L.; van-Esch, J. H.; Roks, A. J.; van-den-Meiracker, A. H.; Danser, A. H. Hypertension: renin-angiotensin-aldosterone system alterations. Circ. Res. 2015, 116, 960-975.  doi: 10.1161/CIRCRESAHA.116.303587

    4. [4]

      Nguyen, G.; Delarue, F.; Burckle, C.; Bouzhir, L.; Giller, T.; Sraer, J. D. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J. Clin. Invest. 2002, 109, 1417-1427.  doi: 10.1172/JCI0214276

    5. [5]

      Giani, J. F.; Janjulia, T.; Taylor, B.; Bernstein, E. A.; Shah, K.; Shen, X. Z.; McDonough, A. A.; Bernstein, K. E.; Gonzalez-Villalobos, R. A. Renal generation of angiotensin II and the pathogenesis of hypertension. Curr. Hypertens Rep. 2014, 16, 477-5.  doi: 10.1007/s11906-014-0477-1

    6. [6]

      Ramya, K.; Suresh, R.; Kumar, H. Y.; Kumar, B. R. P.; Murthy, N. B. S. Decades-old renin inhibitors are still struggling to find a niche in antihypertensive therapy. A fleeting look at the old and the promising new molecules. Bioorg. Med. Chem. 2020, 28, 115466-12.  doi: 10.1016/j.bmc.2020.115466

    7. [7]

      Wright, J. M.; Musini, V. M.; Gill, R. First-line drugs for hypertension. Cochrane Database Syst. Rev. 2010, 128, 47-52.

    8. [8]

      Neal, B.; MacMahon, S.; Chapman, N. Blood pressure lowering treatment trialists effects of ACE inhibitors, calcium antagonists, and other blood-pressure-lowering drugs: results of prospectively designed overviews of randomised trials. Blood pressure lowering treatment trialists' collaboration. Lancet 2000, 356, 1955-1964.  doi: 10.1016/S0140-6736(00)03307-9

    9. [9]

      Hamet, P. Direct renin inhibition: mechanistic advantages and disadvantages compared with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers. Can. J. Cardiol. 2008, 24, 44-49.  doi: 10.1016/S0828-282X(08)71038-9

    10. [10]

      Angeli, F.; Reboldi, G.; Mazzotta, G.; Poltronieri, C.; Garofoli, M.; Ramundo, E.; Biadetti, A.; Verdecchia, P. Safety and efficacy of aliskiren in the treatment of hypertension and associated clinical conditions. Curr. Drug Saf. 2012, 7, 76-85.  doi: 10.2174/157488612800492771

    11. [11]

      Rahuel, J.; Rasetti, V.; Maibaum, J.; Rueger, H.; Goschke, R.; Cohen, N. C.; Stutz, S.; Cumin, F.; Fuhrer, W.; Wood, J. M.; Grutter, M. G. Structure-based drug design: the discovery of novel nonpeptide orally active inhibitors of human renin. Chem. Biol. 2000, 7, 493-504.  doi: 10.1016/S1074-5521(00)00134-4

    12. [12]

      Pantzaris, N. D.; Karanikolas, E.; Tsiotsios, K.; Velissaris, D. Renin inhibition with aliskiren: a decade of clinical experience. J. Clin. Med. 2017, 6, 61-80.  doi: 10.3390/jcm6060061

    13. [13]

      Ichihara, A.; Sakoda, M.; Kurauchi-Mito, A.; Narita, T.; Kinouchi, K.; Bokuda, K.; Itoh, H. New approaches to blockade of the renin-angiotensin-aldosterone system: characteristics and usefulness of the direct renin inhibitor aliskiren. J. Pharmacol. Sci. 2010, 113, 296-300.  doi: 10.1254/jphs.10R04FM

    14. [14]

      Loganathan, L.; Muthusamy, K. Investigation of drug interaction potentials and binding modes on direct renin inhibitors: a computational modeling studies. Lett. Drug Des. Discov. 2019, 16, 919-938.  doi: 10.2174/1570180815666180827113622

    15. [15]

      Politi, A.; Durdagi, S.; Moutevelis-Minakakis, P.; Kokotos, G.; Papadopoulos, M. G.; Mavromoustakos, T. Application of 3D QSAR comfa/comsia and in silico docking studies on novel renin inhibitors against cardiovascular diseases. Eur. J. Med. Chem. 2009, 44, 3703-3711.  doi: 10.1016/j.ejmech.2009.03.040

    16. [16]

      Al-Nadaf, A. H.; Taha, M. O. Discovery of new renin inhibitory leads via sequential pharmacophore modeling, QSAR analysis, in silico screening and in vitro evaluation. J. Mol. Graph. Model 2011, 29, 843-864.  doi: 10.1016/j.jmgm.2011.02.001

    17. [17]

      Sanoski, C. A. Aliskiren: an oral direct renin inhibitor for the treatment of hypertension. Pharmacotherapy 2009, 29, 193-212.  doi: 10.1592/phco.29.2.193

    18. [18]

      Morisawa, N.; Sugano, N.; Yamakawa, T.; Kuriyama, S.; Yokoo, T. Successful long-term effects of direct renin inhibitor aliskiren in a patient with atherosclerotic renovascular hypertension. CEN Case Rep. 2017, 6, 66-73.  doi: 10.1007/s13730-016-0246-x

    19. [19]

      Kapetanovic, I. M. Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chem. Biol. Interact. 2008, 171, 165-176.  doi: 10.1016/j.cbi.2006.12.006

    20. [20]

      Subramanian, G. Computational modeling and design of renin inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 460-465.  doi: 10.1016/j.bmcl.2012.11.059

    21. [21]

      Quezada, G. R.; Piceros, E.; Robles, P; Moraga, C.; Jeldres, R. I. Polyacrylic acid to improve flotation tailings management: understanding the chemical interactions through molecular dynamics. Metals. 2021, 11, 987-993.  doi: 10.3390/met11060987

    22. [22]

      Dimitropoulos, N.; Papakyriakou, A.; Dalkas, G. A.; Sturrock, E. D.; Spyroulias G. A. A computational approach to the study of the binding mode of dual ACE/NEP inhibitors. J. Chem. Inf. Model 2010, 50, 388-396.  doi: 10.1021/ci9005047

    23. [23]

      Lam, P. Y.; Jadhav, P. K.; Eyermann, C. J.; Hodge, C. N.; Ru, Y.; Bacheler, L. T.; Meek, J. L.; Otto, M. J.; Rayner, M. M.; Wong, Y. N. Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science 1994, 263, 380-4.  doi: 10.1126/science.8278812

    24. [24]

      Singh, A.; Paliwal, S. K.; Sharma, M.; Mittal, A.; Sharma, S.; Sharma, J. P. In silico and in vitro screening to identify structurally diverse non-azole CYP51 inhibitors as potent antifungal agent. J. Mol. Graph. Model 2016, 63, 1-7.  doi: 10.1016/j.jmgm.2015.10.014

    25. [25]

      Kairys, V.; Baranauskiene, L.; Kazlauskiene, M.; Matulis, D.; Kazlauskas, E. Binding affinity in drug design: experimental and computational techniques. Expert. Opin. Drug Discov. 2019, 14, 755-768.  doi: 10.1080/17460441.2019.1623202

    26. [26]

      Zhu, G. F.; Wang, Y.; Liu, J.; Wang, H.; Xi, L.; Du, L. F. Interaction between ginkgolic acid and human serum albumin by spectroscopy and molecular modeling methods. J. Solution Chem. 2014, 43, 1232-1249.  doi: 10.1007/s10953-014-0200-5

    27. [27]

      Tang, J. H.; Liang, G. B.; Zheng, C. Z.; Lian, N. Investigation on the binding behavior of ellagic acid to human serum albumin in aqueous solution. J. Solution Chem. 2013, 42, 226-238.  doi: 10.1007/s10953-012-9938-9

    28. [28]

      Wang, Z. Z.; Ma, C. Y.; Yang, J.; Gao, Q. B.; Sun, X. D.; Ding, L. N.; Liu, H. M. Investigating the binding mechanism of (4-cyanophenyl) glycine derivatives as reversible LSD1 by 3D-QSAR, molecular docking and molecular dynamics simulations. J. Mol. Struct. 2019, 1175, 698-707.  doi: 10.1016/j.molstruc.2018.08.029

    29. [29]

      Yan, W.; Lin, G.; Zhang, R.; Liang, Z.; Wu, L.; Wu, W. Studies on molecular mechanism between ACE and inhibitory peptides in different bioactivities by 3D-QSAR and MD simulations. J. Mol. Liquids 2020, 304, 112702-11.  doi: 10.1016/j.molliq.2020.112702

    30. [30]

      Geng, S.; Jiang, Z.; Ma, H.; Wang, Y.; Liu, B.; Liang, G. Interaction mechanism of flavonoids and bovine beta-lactoglobulin: experimental and molecular modelling studies. Food Chem. 2020, 312, 126066-8.  doi: 10.1016/j.foodchem.2019.126066

    31. [31]

      Lv, Y.; Wang, Y.; Zheng, X.; Liang, G. Reveal the interaction mechanism of five old drugs targeting VEGFR2 through computational simulations. J. Mol. Graph. Model 2020. 96, 107538-9.  doi: 10.1016/j.jmgm.2020.107538

    32. [32]

      Kouza, M.; Hu, C. K.; Zung, H.; Li, M. S. Protein mechanical unfolding: importance of non-native interactions. J. Chem. Physics 2009, 131, 215103-6.  doi: 10.1063/1.3272275

    33. [33]

      Abraham, M. J.; Gready, J. E. Optimization of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5. J. Comput. Chem. 2011, 32, 2031-2040.  doi: 10.1002/jcc.21773

  • 加载中
    1. [1]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    2. [2]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    3. [3]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    4. [4]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    5. [5]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    6. [6]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    7. [7]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    8. [8]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    9. [9]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    10. [10]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    11. [11]

      Jinyan ZhangFen LiuQian JinXueyi LiQiong ZhanMu ChenSisi WangZhenlong WuWencai YeLei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881

    12. [12]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    13. [13]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    14. [14]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    15. [15]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    16. [16]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    17. [17]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    18. [18]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    19. [19]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    20. [20]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

Metrics
  • PDF Downloads(3)
  • Abstract views(377)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return