Citation: Zhao-Feng YANG, Zhen-Zhu CAO, U Rehman Aziz, Ju-Cai YANG. Structural and Electronic Properties of Lutetium Doped Germanium Clusters LuGen(+/0/-) (n = 6~19): A Density Functional Theory Investigation[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220315. doi: 10.14102/j.cnki.0254-5861.2011-3305 shu

Structural and Electronic Properties of Lutetium Doped Germanium Clusters LuGen(+/0/-) (n = 6~19): A Density Functional Theory Investigation

  • Corresponding author: Ju-Cai YANG, yangjc@imut.edu.cn
  • Received Date: 7 July 2021
    Accepted Date: 7 September 2021

    Fund Project: the National Natural Science Foundation of China 21863007

Figures(10)

  • Structural growth mechanism, energetics, and electronic properties of cationic, neutral, and anionic lutetium doped germanium cluster LuGen(+/0/-) (n = 6~19) were comprehensively studied by the ABCluster unbiased global search technique with a hybrid density functional theory approach. Compared to the experimental PES, the anion evolution of structure can be clearly defined as four-phase: from the adsorbed to the link structure, then to the half cage motif, and finally to the endohedral structure. The results revealed that the LuGe16- as Frank-Kasper structure with high symmetry of Td can greatly enhance the stabilities. Doped structures have shown thermodynamic stability and appropriate energy gap. These materials are suitable semiconductors. Various approaches, including quasi-spherical geometry with closed-shell model, aromaticity, UV-Vis spectra, density of states (DOS) and partial density of states (PDOS) were applied to further support the results.
  • 加载中
    1. [1]

      Pillarisetty, R. Academic and industry research progress in germanium nanodevices. Nature 2011, 479, 324−328.  doi: 10.1038/nature10678

    2. [2]

      Vaughn II, D. D.; Schaak, R. E. Synthesis, properties and applications of colloidal germanium and germanium-based nanomaterials. Chem. Soc. Rev. 2013, 42, 2861−2879.  doi: 10.1039/C2CS35364D

    3. [3]

      Cardoso, J.; Marom, S.; Mayer, J.; Modi, R.; Podestà, A.; Xie, X.; van Huis, M. A.; Di Vece, M. Germanium quantum dot grätzel-type solar cell. Phys. Status. Solidi. A 2018, 215, 1800570−1800577.  doi: 10.1002/pssa.201800570

    4. [4]

      Jia, L.; Fan, G.; Zi, W.; Ren, X.; Liu, X.; Liu, B.; Liu, S. Ge quantum dot enhanced hydrogenated amorphous silicon germanium solar cells on flexible stainless steel substrate. Sol. Energy 2017, 144, 635−642.  doi: 10.1016/j.solener.2017.01.042

    5. [5]

      Adachi, S.; Takahashi, T. Photoluminescent properties of K2GeF6: Mn4+ red phosphor synthesized from aqueous HF/KMnO4 solution. J. Appl. Phys. 2009, 106, 13516−13521.  doi: 10.1063/1.3160303

    6. [6]

      Zhou, Q.; Zhou, Y.; Liu, Y.; Luo, L.; Wang, Z.; Peng, J.; Yan, J.; Wu, M. A new red phosphor BaGeF6: Mn4+: hydrothermal synthesis, photo-luminescence properties, and its application in warm white LED devices. J. Mater. Chem. C 2015, 3, 3055−3059.  doi: 10.1039/C4TC02956A

    7. [7]

      Hu, W.; Cong, H.; Huang, W.; Huang, Y.; Chen, L.; Pan, A.; Xue, C. Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band. Light-Sci. Appl. 2019, 8, 1−10.  doi: 10.1038/s41377-018-0109-7

    8. [8]

      Liu, Y.; Li, C.; Li, B.; Song, H.; Cheng, Z.; Chen, M.; He, P.; Zhou, H. Germanium thin film protected lithium aluminum germanium phosphate for solid-state Li batteries. Adv. Energy Mater. 2018, 8, 1702374−1702380.  doi: 10.1002/aenm.201702374

    9. [9]

      Zhao, J.; Du, Q.; Zhou, S.; Kumar, V. Endohedrally doped cage clusters. Chem. Rev. 2020, 120, 9021−9163.  doi: 10.1021/acs.chemrev.9b00651

    10. [10]

      Jena, P.; Sun, Q. Super atomic clusters: design rules and potential for building blocks of materials. Chem. Rev. 2018, 118, 5755−5870.  doi: 10.1021/acs.chemrev.7b00524

    11. [11]

      Kumar, V.; Kawazoe, Y. Metal-encapsulated caged clusters of germanium with large gaps and different growth behavior than silicon. Phys. Rev. Lett. 2002, 88, 235504−235507.  doi: 10.1103/PhysRevLett.88.235504

    12. [12]

      Kumar, V.; Kawazoe, Y. Metal-encapsulated fullerenelike and cubic caged clusters of silicon. Phys. Rev. Lett. 2001, 87, 45503−45506.  doi: 10.1103/PhysRevLett.87.045503

    13. [13]

      Zhou, S.; Zhao, Y.; Zhao, J. Cage clusters: from structure prediction to rational design of functional nanomaterials. Chin. J. Struct. Chem. 2020, 39, 1185−1193.

    14. [14]

      Lasmi, M.; Mahtout, S.; Rabilloud, F. The effect of palladium and platinum doping on the structure, stability and optical properties of germanium clusters: DFT study of PdGen and PtGen (n = 1~20) clusters. Comput. Theor. Chem. 2020, 1181, 112830−112836.  doi: 10.1016/j.comptc.2020.112830

    15. [15]

      Borshch, N. A.; Kurganskii, S. I. Spatial structure and electron energy spectrum of HfGen- (n = 6~20) clusters. Inorg. Mater. 2015, 51, 870−876.  doi: 10.1134/S0020168515080075

    16. [16]

      Bandyopadhyay, D.; Sen, P. Density functional investigation of structure and stability of Gen and GenNi (n = 1~20) clusters: validity of the electron counting rule. J. Phys. Chem. A 2010, 114, 1835−1842.  doi: 10.1021/jp905561n

    17. [17]

      Jaiswal, S.; Kumar, V. Growth behavior and electronic structure of neutral and anion ZrGen (n = 1~21) clusters. Comput. Theor. Chem. 2016, 1075, 87−97.  doi: 10.1016/j.comptc.2015.11.013

    18. [18]

      Hou, X.; Gopakumar, G.; Lievens, P.; Nguyen, M. T. Chromium-doped germanium clusters CrGen (n = 1~5): geometry, electronic structure, and topology of chemical bonding. J. Phys. Chem. A 2007, 111, 13544−13553.

    19. [19]

      Triedi, R. K.; Bandyopadhyay, D. Insights of the role of shell closing model and NICS in the stability of NbGen (n = 7~18) clusters: a first-principles investigation. J. Mater. Sci. 2019, 54, 515−528.  doi: 10.1007/s10853-018-2858-3

    20. [20]

      Pham, L. N.; Nguyen, M. T. Insights into geometric and electronic structures of VGe3–/0 clusters from anion photoelectron spectrum assignment. J. Phys. Chem. A 2017, 121, 6949−6956.  doi: 10.1021/acs.jpca.7b07459

    21. [21]

      Tang, C.; Liu, M.; Zhu, W.; Deng, K. Probing the geometric, optical, and magnetic properties of 3d transition-metal endohedral Ge12M (M = Sc~Ni) clusters. Comput. Theor. Chem. 2011, 969, 56−60.  doi: 10.1016/j.comptc.2011.05.012

    22. [22]

      Borshch, N. A.; Pereslavtseva, N. S.; Kurganskii, S. I. Spatial structure and electron energy spectra of ScGen- (n = 6~16) clusters. Russ. J. Phys. Chem. B 2015, 9, 9−18.  doi: 10.1134/S1990793115010030

    23. [23]

      Qin, W.; Lu, W.; Xia, L.; Zhao, L.; Zang, Q.; Wang, C. Z.; Ho, K. M. Structures and stability of metal-doped GenM (n = 9, 10) clusters. Aip. Adv. 2015, 5, 67159−67167.  doi: 10.1063/1.4923316

    24. [24]

      Atobe, J.; Koyasu, K.; Furuse, S.; Nakajima, A. Anion photoelectron spectroscopy of germanium and tin clusters containing a transition- or lanthanide-metal atom; MGen- (n = 8~20) and MSnn- (n = 15~17) (M = Sc~V, Y~Nb, and Lu~Ta). Phys. Chem. Chem. Phys. 2012, 14, 9403−9410.  doi: 10.1039/c2cp23247b

    25. [25]

      Frank, F. C.; Kasper, J. S. Complex alloy structures regarded as sphere packings. I. Definitions and basic principles. Acta. Crystallogr. 1958, 11, 184−190.  doi: 10.1107/S0365110X58000487

    26. [26]

      Zhang, J.; Dolg, M. ABCluster: the artificial bee colony algorithm for cluster global optimization. Phys. Chem. Chem. Phys. 2015, 17, 24173−24181.  doi: 10.1039/C5CP04060D

    27. [27]

      Zhang, J.; Dolg, M. Global optimization of clusters of rigid molecules using the artificial bee colony algorithm. Phys. Chem. Chem. Phys. 2016, 18, 3003−3010.  doi: 10.1039/C5CP06313B

    28. [28]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision C. 01; Gaussian, Inc. : Wallingford, CT 2009.

    29. [29]

      Dolg, M.; Stoll, H.; Savin, A.; Preuss, H. Energy-adjusted pseudopotentials for the rare earth elements. Theor. Chim. Acta 1989, 75, 173−194.  doi: 10.1007/BF00528565

    30. [30]

      Cao, X.; Dolg, M. Valence basis sets for relativistic energy-consistent small-core lanthanide pseudopotentials. J. Chem. Phys. 2001, 115, 7348−7355.  doi: 10.1063/1.1406535

    31. [31]

      Cao, X.; Dolg, M. Segmented contraction scheme for small-core lanthanide pseudopotential basis sets. J. Mol. Struc-Theochem. 2002, 581, 139−147.  doi: 10.1016/S0166-1280(01)00751-5

    32. [32]

      Tozer, D. J.; Handy, N. C. Improving virtual Kohn-Sham orbitals and eigenvalues: application to excitation energies and static polarizabilities. J. Chem. Phys. 1998, 109, 10180−10189.  doi: 10.1063/1.477711

    33. [33]

      Akola, J.; Manninen, M.; Hakkinen, H.; Landman, U.; Li, X.; Wang, L. Photoelectron spectra of aluminum cluster anions: temperature effects and ab initio simulations. Phys. Rev. B 1999, 60, R11297−R11300.  doi: 10.1103/PhysRevB.60.R11297

    34. [34]

      Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558−561.  doi: 10.1103/PhysRevB.47.558

    35. [35]

      Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251−14269.  doi: 10.1103/PhysRevB.49.14251

    36. [36]

      Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169−11186.  doi: 10.1103/PhysRevB.54.11169

    37. [37]

      Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15−50.  doi: 10.1016/0927-0256(96)00008-0

    38. [38]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865−3868.  doi: 10.1103/PhysRevLett.77.3865

    39. [39]

      Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953−17979.  doi: 10.1103/PhysRevB.50.17953

    40. [40]

      Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758−1775.

    41. [41]

      Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580−592.  doi: 10.1002/jcc.22885

    42. [42]

      Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 1996, 14, 33−38.  doi: 10.1016/0263-7855(96)00018-5

    43. [43]

      Wang, J.; Wang, G.; Zhao, J. Structure and electronic properties of Gen (n = 2~25) clusters from density-functional theory. Phys. Rev. B 2001, 64, 205411−205415.  doi: 10.1103/PhysRevB.64.205411

    44. [44]

      Chen, M.; Jiao, Y.; Luo, H.; Liu, J.; Zhang, Q. A density functional study for the isomers of germanium clusters Ge11. Chin. J. Struct. Chem. 2004, 23, 227−231.

    45. [45]

      Wang, B.; Lin, H.; Huang, F.; Xu, J.; Chen, H.; Lin, Z.; Wang, Y. Non-rare-earth BaMgAl10-2xO17: xMn4+, xMg2+: a narrow-band red phosphor for use as a high-power warm w-LED. Chem. Mater. 2016, 28, 3515−3524.  doi: 10.1021/acs.chemmater.6b01303

    46. [46]

      Li, G.; Wang, B.; Wang, R. g-C3N4/Ag/GO composite photocatalyst with efficient photocatalytic performance: synthesis, characterization, kinetic studies, toxicity assessment and degradation mechanism. Chin. J. Struct. Chem. 2020, 39, 1675−1688.

    47. [47]

      Klod, S.; Kleinpeter, E. Ab initio calculation of the anisotropy effect of multiple bonds and the ring current effect of arenes-application in conformational and configurational analysis. J. Chem. Soc. Perk. T. 2 2001, 1893−1898.

    48. [48]

      Schleyer, P. V. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N. J. R. Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc. 1996, 118, 6317−6318.  doi: 10.1021/ja960582d

    49. [49]

      Zubarev, D. Y.; Boldyrev, A. I. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 2008, 10, 5207−5217.  doi: 10.1039/b804083d

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    4. [4]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    5. [5]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    6. [6]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    7. [7]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    8. [8]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    9. [9]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    10. [10]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    11. [11]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    12. [12]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    13. [13]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    14. [14]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    15. [15]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    16. [16]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    17. [17]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    18. [18]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    19. [19]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    20. [20]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

Metrics
  • PDF Downloads(16)
  • Abstract views(724)
  • HTML views(121)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return