Citation: Yun-Long SUN, Jun-Heng HUANG. Improvement of the Selectivity for Hydrogen Peroxide Production via the Synergy of TiO2 and Graphene[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220308. doi: 10.14102/j.cnki.0254-5861.2011-3299 shu

Improvement of the Selectivity for Hydrogen Peroxide Production via the Synergy of TiO2 and Graphene

  • Corresponding author: Jun-Heng HUANG, huangjunheng@fjirsm.ac.cn
  • Received Date: 28 June 2021
    Accepted Date: 14 September 2021

    Fund Project: the Natural Science Foundation of Fujian Province 2020J05079

Figures(5)

  • To replace the four-electron transferred pathway of oxygen reduction reaction (ORR) by two-electron transferred pathway of ORR (2e- ORR) is desirable for the production of hydrogen peroxide with added-value. The development of electrocatalysts with high selectivity toward 2e- ORR is of great interest but it is still a challenge. Here, we synthesized the graphene-supported titanium dioxide nanocomposite as the 2e- ORR catalysts by a combinative process of hydrothermal methods and calcination. Due to the synergistic effect between the graphene with high conductivity and the titanium dioxide with defect sites, the composite TiO2/graphene exhibits the improved selectivity (up to 90%) for oxygen converting into hydrogen peroxide.
  • 加载中
    1. [1]

      Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 2019, 366, 226–231.  doi: 10.1126/science.aay1844

    2. [2]

      Ciriminna, R.; Albanese, L.; Meneguzzo, F.; Pagliaro, M. Hydrogen peroxide: a key chemical for today's sustainable development. ChemSuschem. 2016, 9, 3374–3381.  doi: 10.1002/cssc.201600895

    3. [3]

      Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 2006, 45, 6962–6984.  doi: 10.1002/anie.200503779

    4. [4]

      Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. ACS Catal. 2018, 8, 4064–4081.  doi: 10.1021/acscatal.8b00217

    5. [5]

      Siahrostami, S.; Villegas, S. J.; Bagherzadeh Mostaghimi, A. H.; Back, S.; Farimani, A. B.; Wang, H.; Persson, K. A.; Montoya, J. A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide. ACS Catal. 2020, 10, 7495–7511.  doi: 10.1021/acscatal.0c01641

    6. [6]

      Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Nørskov, J. K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed. 2006, 45, 2897–2901.  doi: 10.1002/anie.200504386

    7. [7]

      Viswanathan, V.; Hansen, H. A.; Rossmeisl, J.; Nørskov, J. K. Unifying the 2e and 4e reduction of oxygen on metal surfaces. J. Phys. Chem. Lett. 2012, 3, 2948–2951.  doi: 10.1021/jz301476w

    8. [8]

      Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W.; Chorkendorff, I.; Stephens, I. E. L.; Rossmeisl, J. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 2013, 12, 1137–1143.  doi: 10.1038/nmat3795

    9. [9]

      Kim, J. H.; Kim, Y. T.; Joo, S. H. Electrocatalyst design for promoting two-electron oxygen reduction reaction: isolation of active site atoms. Curr. Opin. Electrochem. 2020, 2, 109–116.

    10. [10]

      Verdaguer, C. A.; Deiana, D.; Karamad, M.; Siahrostami, S.; Malacrida, P.; Hansen, T. W.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 2014, 14, 1603–1608.  doi: 10.1021/nl500037x

    11. [11]

      Shen, R.; Chen, W.; Peng, Q.; Lu, S.; Zheng, L.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J.; Zhuang, Z.; Chen, C.; Wang, D.; Li, Y. High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem. 2019, 5, 2099–2110.  doi: 10.1016/j.chempr.2019.04.024

    12. [12]

      Pang, Y.; Wang, K.; Xie, H.; Sun, Y.; Titirici, M. M.; Chai, G. L. Mesoporous carbon hollow spheres as efficient electrocatalysts for oxygen reduction to hydrogen peroxide in neutral electrolytes. ACS Catal. 2020, 10, 7434–7442  doi: 10.1021/acscatal.0c00584

    13. [13]

      Chen, S.; Chen, Z.; Siahrostami, S.; Kim, T. R.; Nordlund, D.; Sokaras, D.; Nowak, S.; To, J. W.; Higgins, D.; Sinclair, R. Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide. ACS Sustain. Chem. Eng. 2018, 6, 311–317.  doi: 10.1021/acssuschemeng.7b02517

    14. [14]

      Tang, C.; Jiao, Y.; Shi, B. Y.; Liu, J. N.; Xie, Z. H.; Chen, X.; Zhang, Q. Coordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalysts. Angew. Chem. Int. Ed. 2020, 59, 9171–9176.  doi: 10.1002/anie.202003842

    15. [15]

      Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.  doi: 10.1021/acs.chemrev.7b00488

    16. [16]

      Liu, X.; Dai, L. Carbon-based metal-free catalysts. Nat. Rev. Mater. 2016, 1, 1–12.

    17. [17]

      Lu, Z.; Chen, G.; Siahrostami, S.; Chen, Z.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D.; Liu, Y.; Jaramillo, T. F.; Nørskov, J. K.; Cui, Y. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.  doi: 10.1038/s41929-017-0017-x

    18. [18]

      Jiang, K.; Zhao, J. J.; Wang, H. T. Catalyst design for electrochemical oxygen reduction toward hydrogen peroxide. Adv. Funct. Mater. 2020, 30, 2003321.  doi: 10.1002/adfm.202003321

    19. [19]

      Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J.; Yang, P.; McCloskey, B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 2018, 1, 282–290.  doi: 10.1038/s41929-018-0044-2

    20. [20]

      Zhou, J.; An, X. Q.; Lan, C. H.; Liu, H. J.; Qu, J. H. New insights into the surface-dependent activity of graphitic felts for the electro-generation of H2O2. Appl. Surf. Sci. 2020, 509, 144875–144900.  doi: 10.1016/j.apsusc.2019.144875

    21. [21]

      Cui, Y. Q.; Xu, J. X.; Wang, M. L.; Guan, L. H. Surface oxidation of single-walled-carbon-nanotubes with enhanced oxygen electroreduction activity and selectivity. J. Struct. Chem. 2021, 40, 533–539.

    22. [22]

      Wang, K.; Pang, Y. Y.; Huan, X.; Sun, Y.; Chai, G. L. Synergistic effect of Ta2O5/FC composites for effective electrosynthesis of hydrogen peroxide from O2 reduction. J. Struct. Chem. 2021, 40, 225–232.

    23. [23]

      Pei, D. N.; Gong, L.; Zhang, A. Y.; Zhang, X.; Chen, J. J.; Mu, Y.; Yu, H. Q. Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction. Nat. Commun. 2015, 6, 1–10.

    24. [24]

      Chen, J.; Yao, B.; Li, C.; Shi, G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 2013, 64, 225–229.  doi: 10.1016/j.carbon.2013.07.055

    25. [25]

      Kim, H. W.; Bukas, V. J.; Park, H.; Park, S.; Diederichsen, K. M.; Lim, J.; Cho, Y. H.; Kim, J.; Kim, W.; Han, T. H.; Voss, J.; Luntz, A. C.; McCloskey, B. D. Mechanisms of two-electron and four-electron electrochemical oxygen reduction reactions at nitrogen-doped reduced graphene oxide. ACS Catal. 2019, 10, 852–863.

    26. [26]

      Lu, Z.; Chen, G.; Siahrostami, S.; Chen, Z.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D.; Liu, Y.; Jaramillo, T. F.; Nørskov, J. K.; Cui, Y. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.  doi: 10.1038/s41929-017-0017-x

    27. [27]

      Sun, Y.; Sinev, I.; Ju, W.; Bergmann, A.; Dresp, S.; Kühl, S.; Spoeri, C.; Schmies, H.; Wang, H.; Bernsmeier, D.; Paul, B.; Schmack, R.; Kraehnert. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts. ACS Catal. 2018, 8, 2844–2856.  doi: 10.1021/acscatal.7b03464

    28. [28]

      Li, C. Y.; Shi, Y. Y.; Zhang, Z. C.; Ni, J.; Wang, X. Y.; Lin, J. X.; Lin, B. Y.; Jiang, L. L. Improving the ammonia synthesis activity of Ru/CeO2 through enhancement of the metal-support interaction. J. Energy Chem. 2021, 60, 403–409.  doi: 10.1016/j.jechem.2021.01.031

    29. [29]

      Sun, Y. Y.; Sinev, I.; Ju, W.; Bergmann, A.; Dresp, S.; Kühl, S.; Spöri, C.; Schmies, H.; Wang, H.; Bernsmeier, D.; Paul, B.; Schmack, R.; Kraehnert, R.; Cuenya, B. R.; Strasser P. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts. ACS Catal. 2018, 8, 2844–2856.  doi: 10.1021/acscatal.7b03464

    30. [30]

      Chisaka, M.; Ishihara, A.; Suito, K.; Ota, K. I.; Muramoto, H. Oxygen reduction reaction activity of nitrogen-doped titanium oxide in acid media. Electrochim. Acta 2013, 88, 697–707.  doi: 10.1016/j.electacta.2012.10.137

    31. [31]

      García-Serna, J.; Moreno, T.; Biasi, P.; Cocero, M. J.; Mikkola, J. P.; Salmi, T. O. Engineering in direct synthesis of hydrogen peroxide: targets, reactors and guidelines for operational conditions. Green Chem. 2014, 16, 2320–2343  doi: 10.1039/c3gc41600c

    32. [32]

      Pan, Z.; Wang, K.; Wang, Y.; Tsiakaras, P.; Song, S. In-situ electrosynthesis of hydrogen peroxide and wastewater treatment application: a novel strategy for graphite felt activation. Appl. Catal. B-Environ. 2018, 237, 392–400.  doi: 10.1016/j.apcatb.2018.05.079

    33. [33]

      Sun, Z. P.; Sheng, L.; Gong, H.; Song, L.; Jiang, X. L.; Wang, S. Y.; Meng, X. G.; Wang, T.; He, J. P. Electrocatalytic synthesis of hydrogen peroxide over Au/TiO2 and electrochemical trace of OOH* intermediate. Chem. -Asian J. 2020, 15, 4280–4285.  doi: 10.1002/asia.202001089

    34. [34]

      Miao, F.; Gao, M. M.; Yu, X.; Xiao, P. W.; Wang, M.; Wang, Y. K.; Wang, S. G.; Wang, X. H. TiO2 electrocatalysis via three-electron oxygen reduction for highly efficient generation of hydroxyl radicals. Electrochem. Commun. 2020, 113, 106687–106707.  doi: 10.1016/j.elecom.2020.106687

    35. [35]

      Lazarte, J. P. L.; Dipasupi, R. C.; Pasco, G. Y. S.; Eusebio, R. C P.; Orbecido, A. H.; Doong, R. A.; Liza, B. P. Synthesis of reduced graphene oxide/titanium dioxide nanotubes (RGO/TNT) composites as an electrical double layer capacitor. Nanomaterials 2018, 8, 934–949.  doi: 10.3390/nano8110934

    36. [36]

      Froschl, T.; Hormann, U.; Kubiak, P.; Kucerova, G.; Pfanzelt, M.; Weiss, C. K.; Behm, R. J.; Husing, N.; Kaiser, U.; Landfesterd, K.; Wohlfahrt-Mehrens, M. High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. Chem. Soc. Rev. 2012, 41, 5313–5360.  doi: 10.1039/c2cs35013k

    37. [37]

      Sun, Y. Y.; Silvioli, L.; Sahraie, N. R.; Wen, J.; Li, J. K.; Zitolo, A.; Li, S.; Bagger, A.; Aranarson, L.; Wang, X. L.; Moeller, T.; Bernsmeier, D.; Rossmeisl, J.; Jaouen, F.; Strasser, P. Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts. J. Am. Chem. Soc. 2019, 141, 12372–12381.  doi: 10.1021/jacs.9b05576

    38. [38]

      Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S. Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436–442.  doi: 10.1038/s41563-019-0571-5

    39. [39]

      Wang, Y. L.; Shi, R.; Shang, L.; Waterhouse, G. I. N.; Zhao, J. Q.; Zhang, Q. H.; Gu, L.; Zhang, T. R. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew. Chem. Int. Ed. 2020, 59, 13057–13062.  doi: 10.1002/anie.202004841

    40. [40]

      Ma, F. H.; Wang, S. H.; Liang, X. Z.; Wang, C. Ni3B as a highly efficient and selective catalyst for the electrosynthesis of hydrogen peroxide. Appl. Catal. B-Environ. 2020, 279, 119371–119379.  doi: 10.1016/j.apcatb.2020.119371

    41. [41]

      Chen, S. C.; Chen, Z. H.; Siahrostami, S. Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide. ACS Sustain. Chem. Eng. 2018, 6, 311–317.  doi: 10.1021/acssuschemeng.7b02517

  • 加载中
    1. [1]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    2. [2]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    3. [3]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    4. [4]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    5. [5]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    8. [8]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    9. [9]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    10. [10]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    11. [11]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    12. [12]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    13. [13]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    14. [14]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    15. [15]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    16. [16]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    17. [17]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    18. [18]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    19. [19]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    20. [20]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

Metrics
  • PDF Downloads(11)
  • Abstract views(504)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return