Citation: Hui-Dong REN, Kang-Ming LI, Yang-Jie YI, Man WANG, Jiao YE, Ai-Xi HU, Yun CHEN, Xiao-Ming OU, Jian-Ming LI. Synthesis, Crystal Structure and DFT Calculation of 2-Methoxyimino Phenylacetate Derivatives Containing 1, 3, 4-Oxadiazole Ring[J]. Chinese Journal of Structural Chemistry, ;2021, 40(12): 1647-1654. doi: 10.14102/j.cnki.0254-5861.2011-3292 shu

Synthesis, Crystal Structure and DFT Calculation of 2-Methoxyimino Phenylacetate Derivatives Containing 1, 3, 4-Oxadiazole Ring

  • Corresponding author: Jiao YE, yejiao@hnu.edu.cn Ai-Xi HU, axhu@hnu.edu.cn
  • Received Date: 2 June 2021
    Accepted Date: 6 September 2021

    Fund Project: the National Key R & D Program of China 2016YFD0300708

Figures(5)

  • Four novel 2-methoxyimino phenylacetate derivatives containing 1, 3, 4-oxadiazole ring were designed and synthesized from the key intermediate of Trifloxystrobin or Azoxystrobin via intermediate derivatization and active structure splicing. The chemical structures of the target compounds were confirmed by 1H NMR, 13C NMR and elemental analysis. The crystal structure of methyl (E)-2-(methoxyimino)-2-(2-(((5-((4-methoxyphenoxy)methyl)-1, 3, 4-oxadiazol-2-yl)thio)methyl)phenyl)acetate (A1) was determined by single-crystal X-ray diffraction. Compound A1 belongs to triclinic system, space group P\begin{document}$ \overline 1 $\end{document} with two molecules in each unit cell. The benzene ring plane C(2)–C(3)–C(4)–C(5)–C(6)–C(7) and oxazole ring plane are nearly parallel with the dihedral angle of 6.4°. The benzene ring plane C(12)–C(13)–C(14)–C(15)–C(16)–C(17) and oxazole ring plane are not perpendicular with the dihedral angle of 49.4°. The crystal of compound A1 is stabilized by π-π stacking interactions. The fungicidal activities of the target compounds against four plant pathogenic fungi in vitro were tested, and some of them had good activities. The DFT calculation was carried out to study the structure-activity relationship of the title derivatives using Gasian 09 and Multiwfn 3.6.
  • 加载中
    1. [1]

      Guo, Y.; Qu, L. L.; Wang, X. G.; Huang, M. X.; Jia, L.; Zhang, Y. B. Iodine-catalyzed oxidative cyclisation for the synthesis of sarisan analogues containing 1, 3, 4-oxadiazole as insecticidal agents. RSC. Adv. 2016, 6, 93505−93510.  doi: 10.1039/C6RA22343E

    2. [2]

      Li, X. W.; He, D. H. Synthesis, crystal structure and biological activity of 2-(anthracen-9-yl)-5-p-tolyl-1, 3, 4-oxadiazole. Chin. J. Struct. Chem. 2012, 31, 367−372.

    3. [3]

      Zhou, Q.; Zheng, D. D.; Shi, Y. J.; Yao, W.; Qian, H. W.; Ding, Y.; Wei, Z. H.; Shen, A. B.; Feng, X.; Shi, J.; Dai, H. Synthesis and insecticidal activities of novel pyrazole oxime ethers containing an oxazole moiety. Chin. J. Org. Chem. 2018, 38, 3318−3325.  doi: 10.6023/cjoc201807048

    4. [4]

      Kapoor, A.; Dhiman, N. Synthesis and evaluation of 2-aryl substituted benzimidazole derivatives bearing 1, 3, 4-oxadiazole nucleus for antimicrobial activity. Der Pharmacia Sinica 2019, 8, 97−104.

    5. [5]

      Sun, G. X.; Shi, Y. X.; Zhai, Z. W.; Sun, Z. H.; Weng, J. Q.; Tan, C. X.; Liu, X. H.; Li, B. J. Synthesis, crystal structure and antifungal activity of 2-((2-fluorobenzyl)thio)-5-(pyridin-4-yl)-1, 3, 4-oxadiazole. Chin. J. Struct. Chem. 2016, 35, 1855−1859.

    6. [6]

      Liu, J. C.; Wang, W. D.; He, H. W. Synthesis and fungicidal activity of 2, 5-substituted-1, 3, 4-oxadiazole derivatives. Chin. J. Org. Chem. 2014, 34, 1447−1451.  doi: 10.6023/cjoc201403013

    7. [7]

      Kalhor, M.; Dadras, A. Synthesis, characterization and herbicidal activities of new 1, 3, 4-oxadiazoles, 1, 3, 4-thiadiazoles and 1, 2, 4-triazoles derivatives bearing (R)-5-chloro-3-fluoro-2-phenoxypyridine. J. Heterocyclic Chem. 2013, 50, 220−224.  doi: 10.1002/jhet.950

    8. [8]

      Shi, Y. J.; Li, Y.; Fang, Y.; Chen, J.; Ye, L. Y.; Ge, S. S.; Dai, H. Synthesis and biological activity of novel cyanoacrylate containing 1, 3, 4-oxadiazole moiety. Chin. J. Org. Chem. 2016, 36, 2472−2478.  doi: 10.6023/cjoc201605029

    9. [9]

      Mo, Q. J.; Duan, W. G.; Li, X. R.; Huang, D. P.; Luo, Z. J. Synthesis and herbicidal activity of 2-substituted amino-5-dehydroabietyl-1, 3, 4-oxadiazole derivatives. Chin. J. Org. Chem. 2011, 31, 1114−1121.

    10. [10]

      Huang, T. H.; Chen, H.; Chen, J.; Zhang, A. D. Syntheses, crystal structures, and biological activities of two 5-pyrimidinyl-1, 2, 4-oxadiazoles. Chin. J. Struct. Chem. 2014, 33, 1455−1459.

    11. [11]

      Mochona, B.; Mazzio, E.; Gangapurum, M.; Mateeva, N.; Redda, K. K. Synthesis of some benzimidazole derivatives bearing 1, 3, 4-oxadiazole moiety as anticancer agents. Chem. Sci. Trans. 2015, 4, 534−540.

    12. [12]

      Zheng, X. J.; Li, C. S.; Cui, M. Y.; Song, Z. W.; Bai, X. Q.; Liang, C. W.; Wang, H. Y.; Zhang, T. Y. Synthesis, biological evaluation of benzothiazole derivatives bearing a 1, 3, 4-oxadiazole moiety as potential anti-oxidant and anti-inflammatory agents. Bioorg. Med. Chem. Lett. 2020, 30, 127237.  doi: 10.1016/j.bmcl.2020.127237

    13. [13]

      Chen, T. B.; Wu, Y. Y. Research progress of oxadiazole electron transport materials. New Chem. Mater. 2009, 37, 15−17.

    14. [14]

      Zhang, Z. M.; Li, G. W.; Ma, Y. G.; Wu, F.; Tian, W. J.; Shen, J. C. Synthesis of oxadiazole derivatives containing thiophene ring as electron transport materials in OEL devices. Chin. J. Org. Chem. 2000, 20, 529−532.

    15. [15]

      Li, Y.; Liu, J.; Zhang, H. Q.; Yang, X. P.; Liu, Z. J. Stereoselective synthesis and fungicidal activities of (E)-α-(methoxyimino)-benzeneacetate derivatives containing 1, 3, 4-oxadiazole ring. Bioorg. Med. Chem. Lett. 2006, 16, 2278−2282.  doi: 10.1016/j.bmcl.2006.01.026

    16. [16]

      Li, P.; Yin, J.; Xu, W. M.; Wu, J.; He, M.; Hu, D. Y.; Yang, S.; Song, B. A. Synthesis, antibacterial activities, and 3D-QSAR of sulfone derivatives containing 1, 3, 4-oxadiazole moiety. Chem. Biol. Drug Des. 2013, 82, 546−556.  doi: 10.1111/cbdd.12181

    17. [17]

      Li, P.; Shi, L.; Yang, X.; Yang, L.; Chen, X. W.; Wu, F.; Shi, Q. C.; Xu, W. M.; He, M.; Hu, D. Y.; Song, B. A. Design, synthesis, and antibacterial activity against rice bacterial leaf blight and leaf streak of 2, 5-substituted-1, 3, 4-oxadiazole/thiadiazole sulfone derivative. Bioorg. Med. Chem. Lett. 2014, 24, 1677−1680.  doi: 10.1016/j.bmcl.2014.02.060

    18. [18]

      Su, S. H.; Zhou, X.; Liao, G. P.; Qi, P. Y.; Jin, L. H. Synthesis and antibacterial evaluation of new sulfone derivatives containing 2-aroxymethyl-1, 3, 4-oxadiazole/thiadiazole moiety. Molecules 2017, 22, 64.

    19. [19]

      Wang, S. B.; Gan, X. H.; Wang, Y. J.; Li, S. Y.; Yi, C. F.; Chen, J. X.; He, F. C.; Yang, Y. Y.; Hu, D. Y.; Song, B. A. Novel 1, 3, 4-oxadiazole derivatives containing a cinnamic acid moiety as potential bactericide for rice bacterial diseases. Int. J. Mol. Sci. 2019, 20, 1020.  doi: 10.3390/ijms20051020

    20. [20]

      Hu, A. X.; Li, K. M.; Xie, W. X.; Ye, J.; Chen, J.; Xie, B. J.; Ren, H. D. A preparation method of trifloxystrobin and its intermediate. CN 108863845 A. 2018−11−23.

    21. [21]

      Zhu, Z. L.; Zhang, R. H.; Yuan, L. L.; Ni, Y. M. A method of preparing trifloxystrobin. CN 1560027 A. 2005−01−05.

    22. [22]

      Zhang, R. H.; Zhu, Z. L.; Li, Y. J. A high-yield synthesis process of trifloxystrobin. CN 1793115 A. 2006−06−28.

    23. [23]

      Wang, X. B.; Yan, J. H.; Wang, M. Q.; Liu, M. H.; Zhang, J. P.; Chen, L. J.; Xue, W. Synthesis and three-dimensional quantitative structure-activity relationship study of quinazoline derivatives containing a 1, 3, 4-oxadiazole moiety as efficient inhibitors against Xanthomonas axonopodis pv. citri. Mol. Divers. 2018, 22, 791−802.

    24. [24]

      Sheldrick, G. M. A short history of SHELXS. Acta. Cryst. 2008, A64, 112−122.

    25. [25]

      Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Solution. University of Göttingen. Germany 1997.

    26. [26]

      Song, B. A.; Chen, Y. Z.; Chen, J. X.; Wang, Y. J.; Wang, Z. Z.; Zhou, D. G.; Gan, X. H. Styryl-containing 1, 3, 4-oxadiazole sulfide compound, preparation method and application thereof. CN 106674147 A. 2017−05−17.

    27. [27]

      Liu, A. P.; Yu, W. Q.; Liu, M. H.; Bai, J. J.; Liu, W. D.; Liu, X. P.; Pei, H.; Hu, L.; Huang, M. Z.; Wang, X. G. Synthesis and insecticidal activity of novel nitropyridyl-based dichloropropene ethers. J. Agric. Food Chem. 2015, 63, 7469−7475.

    28. [28]

      Abu-Awwad, F.; Politzer, P. Variation of parameters in Becke-3 hybrid exchange correlation functional. J. Comput. Chem. 2015, 21, 227−238.

    29. [29]

      Lee, C.; Wang, W.; Parr, R. G. Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785−789.

    30. [30]

      Lu, T.; Chen, F. W. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580−592.

    31. [31]

      Lu, T.; Chen, F. W. Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm. J. Mol. Graph. Model. 2012, 38, 314−323.
       

    32. [32]

      Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 1996, 14, 33−38.

    33. [33]

      Guo, H.; Han, J.; Pang, M. L.; Ma, Y. X.; Meng, J. B. Synthesis and characterization of acrylate group bridged γ-substituted β-diketopyrazole and isoxazole derivatives. Chem. J. Chinese Universities 2005, 26, 1845−1848.

    34. [34]

      Zhang, Y.; Shi, W. F. Synthesis and photopolymerization properties of self-initiated photopolymerized acrylate oligomers. Chem. J. Chinese Universities 2012, 33, 635−639.

    35. [35]

      Xiao, J. C.; Wu, Q.; Lei, Y.; Sun, J. R.; Jiang, F.; Xu, Y.; Xu, X. D.; Li, T. Y. Synthesis, single-crystal X-ray structure, theoretical studies of triple-{Mn-III-Schiff-base}-decorated molybdate. Crystals 2019, 9, 657.

    36. [36]

      Janiak, C. A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc., Dalton Trans. 2000, 21, 3885−3896.

    37. [37]

      Wang, B. L.; Shi, Y. X.; Zhang, S. J.; Ma, Y.; Wang, H. X.; Zhang, L. Y.; Wei, W.; Liu, X. H.; Li, Y. H.; Li, Z. M.; Li, B. J. Syntheses, biological activities and SAR studies of novel carboxamide compounds containing piperazine and arylsulfonyl moieties. Eur. J. Med. Chem. 2016, 117, 167−178.
       

    38. [38]

      Karelson, M.; Lobanov, V. S. Quantum-chemical descriptors in QSAR/QSPR studies. Chem. Rev. 1996, 96, 1027−1043.

    39. [39]

      Farag, A. M.; Fahim, A. M. Synthesis, biological evaluation and DFT calculation of novel pyrazole and pyrimidine derivatives. J. Mol. Struct. 2019, 1179, 304−314.

    40. [40]

      Du, Q. S.; Wang, C. H.; Wang, Y. T.; Huang, R. B. Empirical and accurate method for the three dimensional electrostatic potential (EM-ESP) of biomolecules. J. Phys. Chem. B 2010, 114, 4351−4357.
       

    41. [41]

      Murray, J. S.; Politzer, P. The electrostatic potential: an overview. Wires Comput. Mol. Sci. 2011, 1, 153−163.

  • 加载中
    1. [1]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    2. [2]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    3. [3]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    4. [4]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    5. [5]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    6. [6]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    7. [7]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    8. [8]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    9. [9]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    10. [10]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    11. [11]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    12. [12]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    13. [13]

      Xiangyu ChenAihao XuDong WeiFang HuangJunjie MaHuibing HeJing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175

    14. [14]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    15. [15]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    16. [16]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    17. [17]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    20. [20]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

Metrics
  • PDF Downloads(2)
  • Abstract views(327)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return