Citation: Xiao-Si MA, Yong-Zhu ZHOU, Lei ZHANG. Theoretical Measurements of Quantitative Effects Caused by Spectator Ligands on Palladium-catalyzed C−H Activation[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220301. doi: 10.14102/j.cnki.0254-5861.2011-3286 shu

Theoretical Measurements of Quantitative Effects Caused by Spectator Ligands on Palladium-catalyzed C−H Activation

  • Corresponding author: Yong-Zhu ZHOU, li_weihnxy@163.com Lei ZHANG, li_weihnxy@163.com
  • Received Date: 15 June 2021
    Accepted Date: 16 August 2021

    Fund Project: the National Natural Science Foundation of China 22003045the National Natural Science Foundation of China 21808156the Fundamental Research Funds for Tianjin Colleges 2018KJ171the Fundamental Research Funds for Tianjin Colleges 2017KJ064

Figures(11)

  • Ligands can definitely influence C−H activation at the metal center. A ligand not directly participating in the reaction is called a spectator ligand. We attempt to quantitatively characterize the effects of diverse spectator ligands on C−H activation at palladium. We designed a model palladium catalyst and selected an array of spectator ligands, such as methoxyl, amide, methyl, phenyl, cyanide, fluorine, chlorine, and several neutral ligands, and performed density functional theory calculations on the mechanism and energetics of C−H activation reactions of benzene with different catalysts. Univalent ligands have substantially larger effects than neutral ligands, and strongly σ-donating ligands (e.g., methyl and phenyl) severely hinder the C−H activation in progress. A ligand trans to the reaction site influences C−H activation more than that cis to the reaction site, indicating electronic effects to be at work. For example, the existence of a methyl ligand raises the barrier height of C−H activation by 6.4 or 14.4 kcal/mol when it is placed at the position cis or trans to the C−H activation site. The effects of poorly σ-donating ligands are not significant and similar to those of the κ1-acetate ligand. Some σ-donating and π-accepting ligands, such as cyanide and isonitrile, hinder the C−H activation trans to them but appear to facilitate the C−H activation cis to them. On the basis of molecular orbital analyses, a chemical model is proposed to understand the observed ligand effects. Lastly, the conclusions are applied to explain the plausible mechanism of the dehydrogenative Heck coupling.
  • 加载中
    1. [1]

      Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. Palladium(Ⅱ)-catalyzed C−H activation/C−C cross-coupling reactions: versatility and practicality. Angew. Chem. Int. Ed. 2009, 48, 5094−5115.  doi: 10.1002/anie.200806273

    2. [2]

      Saini, G.; Kapur, M. Palladium-catalyzed functionalizations of acidic and non-acidic C(sp3)–H bonds – recent advances. Chem. Commun. 2021, 57, 1693−1714.  doi: 10.1039/D0CC06892F

    3. [3]

      Chen, G.; Gong, W.; Zhuang, Z.; Andrä, M. S.; Chen, Y. Q.; Hong, X.; Yang, Y. F.; Liu, T.; Houk, K. N.; Yu, J. Q. Ligand-accelerated enantioselective methylene C(sp3)–H bond activation. Science 2016, 353, 1023–1027.  doi: 10.1126/science.aaf4434

    4. [4]

      Wu, C.; McCollom, S. P.; Zheng, Z. P.; Zhang, J. D.; Sha, S. C.; Li, M. Y.; Walsh, P. J.; Tomson, N. C. Aryl fluoride activation through palladium-magnesium bimetallic cooperation: a mechanistic and computational study. ACS Catal. 2020, 10, 7934–7944.  doi: 10.1021/acscatal.0c01301

    5. [5]

      Rocaboy, R.; Dailler, D.; Baudoin, O. A four-step synthesis of (±)-γ-lycorane via Pd0-catalyzed double C(sp2)–H/C(sp3)–H arylation. Org. Lett. 2018, 20, 772–775.  doi: 10.1021/acs.orglett.7b03909

    6. [6]

      Zhang, Q.; Shi, B. F. From reactivity and regioselectivity to stereoselectivity: an odyssey of designing PIP amine and related directing groups for C−H activation. Chin. J. Chem. 2019, 37, 647–656.  doi: 10.1002/cjoc.201900090

    7. [7]

      Shi, X. L.; Wang, Z. M.; Li, Y. X.; Li, X. W.; Li, X. Q.; Shi, D. Y. Palladium-catalyzed remote C−H phosphonylation of indoles at the C4 and C6 positions by a radical approach. Angew. Chem. Int. Ed. 2021, 60, 13871–13876.  doi: 10.1002/anie.202103395

    8. [8]

      Li, H. T.; Huang, S. H.; Wang, Y. J.; Huo, C. D. Oxidative dehydrogenative [2+3]-cyclization of glycine esters with aziridines leading to imidazolidines. Org. Lett. 2018, 20, 92–95.  doi: 10.1021/acs.orglett.7b03448

    9. [9]

      Wu, Y. B.; Xie, D.; Zang, Z. L.; Zhou, C. H.; Cai, G. X. Palladium-catalyzed aerobic regio- and stereo-selective olefination reactions of phenols and acrylates via direct dehydrogenative C(sp2)–O cross-coupling. Chem. Commun. 2018, 54, 4437–4440.  doi: 10.1039/C8CC01226A

    10. [10]

      Rej, S.; Das, A.; Chatani, N. Strategic evolution in transition metal-catalyzed directed C−H bond activation and future directions. Coord. Chem. Rev. 2021, 431, 213683–37.  doi: 10.1016/j.ccr.2020.213683

    11. [11]

      Li, R.; Xu, X.; Ye, M. Construction of medium rings via transition metal-catalyzed insertion of π-unsaturated compounds into C−H bonds. Chin. J. Org. Chem. 2020, 40, 3196−3202  doi: 10.6023/cjoc202005056

    12. [12]

      Carole, W. A.; Colacot, T. J. Understanding palladium acetate from a user perspective. Chem. Eur. J. 2016, 22, 7686−7695.  doi: 10.1002/chem.201601450

    13. [13]

      Shao, Q.; Wu, K.; Zhuang, Z.; Qian, S.; Yu, J. Q. From Pd(OAc)2 to chiral catalysts: the discovery and development of bifunctional mono-N-protected amino acid ligands for diverse C−H functionalization reactions. Acc. Chem. Res. 2020, 53, 833−851.  doi: 10.1021/acs.accounts.9b00621

    14. [14]

      Meng, G.; Lam, N. Y. S.; Lucas, E. L.; Saint-Denis, T. G.; Verma, P.; Chekshin, N.; Yu, J. Q. Achieving site-selectivity for C−H activation processes based on distance and geometry: a carpenter's approach. J. Am. Chem. Soc. 2020, 142, 10571−10591.  doi: 10.1021/jacs.0c04074

    15. [15]

      Lin, T. Z.; Qian, P. C.; Wang, Y. E.; Ou, M. J.; Jiang, L.; Zhu, C.; Xu, Y. C.; Xiong, D.; Mao, J. Y. Palladium-catalyzed direct arylation of 2-pyridylmethyl silanes with aryl bromides. Org. Lett. 2021, 23, 3000−3003.  doi: 10.1021/acs.orglett.1c00677

    16. [16]

      Halder, P.; Roy, T.; Das, P. Recent developments in selective N-arylation of azoles. Chem. Commun. 2021, 57, 5235−5249.  doi: 10.1039/D1CC01265G

    17. [17]

      Thongpaen, J.; Manguin, R.; Baslé, O. Chiral N-heterocyclic carbene ligands enable asymmetric C−H bond functionalization. Angew. Chem. Int. Ed. 2020, 59, 10242–10251.  doi: 10.1002/anie.201911898

    18. [18]

      Zhang, L.; Fang, D. C. An explicit interpretation of the directing group effect for the Pd(OAc)2-catalyzed aromatic C–H activations. J. Org. Chem. 2016, 81, 7400−7410.  doi: 10.1021/acs.joc.6b00997

    19. [19]

      Zhou, J.; Zhou, Y.; Li, Y.; Zhang, J.; Zhang, L. DFT mechanistic study on palladium-catalyzed redox-neutral hydroarylation of unactivated alkenes with arylboronic acids. Asian J. Org. Chem. 2021, 10, 412−420.  doi: 10.1002/ajoc.202000647

    20. [20]

      Davies, D. L.; Macgregor, S. A.; McMullin, C. L. Computational studies of carboxylate-assisted C–H activation and functionalization at group 8~10 transition metal centers. Chem. Rev. 2017, 117, 8649−8709.  doi: 10.1021/acs.chemrev.6b00839

    21. [21]

      Ling, B.; Liu, Y.; Jiang, Y. Y.; Liu, P.; Bi, S. Mechanistic insights into the ruthenium-catalyzed [4+1] annulation of benzamides and propargyl alcohols by DFT studies. Organometallics 2019, 38, 1877−1886.  doi: 10.1021/acs.organomet.8b00769

    22. [22]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A. 02, Gaussian, Inc., Wallingford, CT 2009.

    23. [23]

      Becke, A. D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.  doi: 10.1063/1.464913

    24. [24]

      Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. Optimization of Gaussian-type basis sets for local spin density functional calculations. Part Ⅰ. Boron through neon, optimization technique and validation. Can. J. Chem. 1992, 70, 560−571.  doi: 10.1139/v92-079

    25. [25]

      Sosa, C.; Andzelm, J.; Elkin, B. C.; Wimmer, E.; Dobbs, K. D.; Dixon, D. A. A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds. J. Phys. Chem. 1992, 96, 6630−6636.  doi: 10.1021/j100195a022

    26. [26]

      Scalmani, G.; Frisch, M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 2010, 132, 114110−114124.  doi: 10.1063/1.3359469

    27. [27]

      Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787−1799.  doi: 10.1002/jcc.20495

    28. [28]

      Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057−1065.  doi: 10.1039/b515623h

    29. [29]

      Zhang, L.; Jiang, B.; Chen, Y.; Lv, J. F.; Feng, W. C. A computational study on the reaction mechanisms of nickel-catalyzed diarylation of alkenes. Eur. J. Org. Chem. 2019, 2019, 6217–6224.  doi: 10.1002/ejoc.201900940

    30. [30]

      Zhou, Y.; Xue, R. C.; Feng, Y.; Zhang, L. How does HOTf/HFIP cooperative system catalyze the ring-opening reaction of cyclopropanes? A DFT study. Asian J. Org. Chem. 2020, 9, 311–316.  doi: 10.1002/ajoc.202000031

    31. [31]

      Pearson, R. G. Antisymbiosis and the trans effect. Inorg. Chem. 1973, 12, 712–713.  doi: 10.1021/ic50121a052

  • 加载中
    1. [1]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    2. [2]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    3. [3]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    4. [4]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    5. [5]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    6. [6]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    7. [7]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    8. [8]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    9. [9]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    10. [10]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    11. [11]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    12. [12]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    13. [13]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    14. [14]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    15. [15]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    16. [16]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    17. [17]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    18. [18]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    19. [19]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    20. [20]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

Metrics
  • PDF Downloads(4)
  • Abstract views(491)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return