Citation: Zhi YANG, Kun-Rong LI, Yuan-Ye ZHANG, Jia-Le HU, Tian-Yuan LI, Zi-Xiang WENG, Li-Xin WU. Antibiotic Silver Particles Coated Graphene Oxide/polyurethane Nanocomposites Foams and Its Mechanical Properties[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220312. doi: 10.14102/j.cnki.0254-5861.2011-3273 shu

Antibiotic Silver Particles Coated Graphene Oxide/polyurethane Nanocomposites Foams and Its Mechanical Properties

  • Corresponding author: Zi-Xiang WENG, wzx@fjirsm.ac.cn Li-Xin WU, lxwu@fjirsm.ac.cn
  • Received Date: 1 June 2021
    Accepted Date: 6 July 2021

    Fund Project: the National Natural Science Foundation of China U1905217the STS Project of Fujian-CAS 2019T3018the Natural Science Foundation of Fujian Province 2020J05084the Regional Development Projects of Fujian Province 2020H4018

Figures(3)

  • Silver nanoparticles (AgNPs) are widely adopted in polyurethane foams (PUFs) as a type of antibacterial agent. However, due to its poor interfacial interaction, AgNPs are difficult to be dispersed in the polymer matrix uniformly, which deteriorates the enhancement effect. In this paper, silver-coated graphene nanocomposite (Ag/GO) is prepared by an enzyme reductant which is efficient and non-toxic. Compared with traditional antibacterial agent, the Ag/GO nanoparticles can be uniformly dispersed in the nanocomposite, which means that Ag/GO can be well-dispersed into the polyurethane foams (PUFs). Compared with AgNPs modified PUFs, the as-prepared Ag/GO modified PUFs have a 1.85% improvement in resilience, 7.9% improvement in tensile strength, 6.52% improvement in tensile elongation, and 8.74% improvement in bacteriostats rate at a loading of 0.4%.
  • 加载中
    1. [1]

      Zhu, Y. F.; Xiong, J. P.; Tang, Y. M.; Zuo, Y. EIS study on failure process of two polyurethane composite coatings. Prog. Org. Coat. 2010, 69, 7–11.  doi: 10.1016/j.porgcoat.2010.04.017

    2. [2]

      Maminski, M. L.; Wieclaw-Midor, A. M.; Parzuchowski, P. G. The effect of silica-filler on polyurethane adhesives based on renewable resource for wood bonding. Polymers 2020, 12, 2177–13.  doi: 10.3390/polym12102177

    3. [3]

      Feng, C. F.; Yi, Z. F.; Jin, X.; Seraji, S. M.; Dong, Y. J.; Kong, L. X.; Salim, N. Solvent crystallization-induced porous polyurethane/graphene composite foams for pressure sensing. Compos. Pt. B-Eng. 2020, 194, 108065–10.  doi: 10.1016/j.compositesb.2020.108065

    4. [4]

      Yao, Y. Y.; Jin, S. H.; Ma, X. L.; Yu, R.; Zou, H. M.; Wang, H. J.; Lv, X. J.; Shu, Q. H. Graphene-containing flexible polyurethane porous composites with improved electromagnetic shielding and flame retardancy. Compos. Sci. Technol. 2020, 200, 108457–10.  doi: 10.1016/j.compscitech.2020.108457

    5. [5]

      Furtwengler, P.; Averous, L. Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polym. Chem. 2018, 9, 4258–4287.  doi: 10.1039/C8PY00827B

    6. [6]

      Davis, R. L.; Nalepa, C. J. Studies of alkylthio-substituted aromatic diamines as curatives for polyurethane cast elastomers. J. Polym. Sci. Pol. Chem. 1990, 28, 3701–3724.  doi: 10.1002/pola.1990.080281315

    7. [7]

      Atiqah, A.; Mastura, M. T.; Ali, B. A.; Jawaid, M.; Sapuan, S. M. A review on polyurethane and its polymer composites. Curr. Org. Synth. 2017, 14, 233–248.  doi: 10.2174/1570179413666160831124749

    8. [8]

      Wang, L.; Hong, Y.; Li, J. X. Durability of running shoes with ethylene vinyl acetate or polyurethane midsoles. J. Sports Sci. 2012, 30, 1787–1792.  doi: 10.1080/02640414.2012.723819

    9. [9]

      Gheydari, M.; Dorraji, M. S. S.; Fazli, M.; Rasoulifard, M. H.; Almaie, S.; Daneshvar, H.; Ashjari, H. R. Preparation of open-cell polyurethane nanocomposite foam with Ag3PO4 and GO: antibacterial and adsorption characteristics. J. Polym. Res. 2021, 28, 02432–12.

    10. [10]

      Sportelli, M. C.; Picca, R. A.; Ronco, R.; Bonerba, E.; Tantillo, G.; Pollini, M.; Sannino, A.; Valentini, A.; Cataldi, T. R. I.; Cioffi, N. Investigation of industrial polyurethane foams modified with antimicrobial copper nanoparticles. Materials 2016, 9, 9070544–13.

    11. [11]

      Hong, C. H.; Kim, H. S.; Park, H. H.; Kim, Y. H.; Kim, S. B.; Hwang, T. W. Development of antimicrobial polyurethane foam for automotive seat modified by Urushiol. Polym. -Korea 2006, 30, 402–406.

    12. [12]

      Udabe, E.; Isik, M.; Sardon, H.; Irusta, L.; Salsamendi, M.; Sun, Z.; Zheng, Z. Q.; Yan, F.; Mecerreyes, D. Antimicrobial polyurethane foams having cationic ammonium groups. J. Appl. Polym. Sci. 2017, 134, 45473–7.  doi: 10.1002/app.45473

    13. [13]

      Chernousova, S.; Epple, M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew. Chem. Int. Ed. 2013, 52, 1636–1653.  doi: 10.1002/anie.201205923

    14. [14]

      Madkour, T. M.; Abdelazeem, E. A.; Tayel, A.; Mustafa, G.; Siam, R. In situ polymerization of polyurethane-silver nanocomposite foams with intact thermal stability, improved mechanical performance, and induced antimicrobial properties. J. Appl. Polym. Sci. 2016, 43125–133.

    15. [15]

      Kvitek, L.; Panacek, A.; Prucek, R.; Soukupova, J.; Vanickova, M.; Kolar, M.; Zboril, R. Antibacterial activity and toxicity of silver – nanosilver versus ionic silver. J. Phys. Conf. Ser. 2011, 304, 012029–9.  doi: 10.1088/1742-6596/304/1/012029

    16. [16]

      Vinay, V. C.; Varma, D. S. M.; Chandan, M. R.; Sivabalan, P.; Jaiswal, A. K.; Swetha, S.; Kaczmarek, B.; Sionkowska, A. Study of silver nanoparticle-loaded auxetic polyurethane foams for medical cushioning applications. Polym. Bull. 2021, 78, 03705–18.  doi: 10.1007/s00289-020-03289-y

    17. [17]

      Zhao, B.; Qian, Y.; Qian, X.; Fan, J.; Feng, Y. Fabrication and characterization of waterborne polyurethane/silver nanocomposite foams. Polym. Compos. 2019, 40, 1492–1498.  doi: 10.1002/pc.24888

    18. [18]

      Wattanodorn, Y.; Jenkan, R.; Atorngitjawat, P.; Wirasate, S. Antibacterial anionic waterborne polyurethanes/Ag nanocomposites with enhanced mechanical properties. Polym. Test. 2014, 40, 163–169.  doi: 10.1016/j.polymertesting.2014.09.004

    19. [19]

      Njuguna, J.; Pielichowski, K. Polymer nanocomposites for aerospace applications: fabrication. Adv. Eng. Mater. 2004, 6, 193–203.  doi: 10.1002/adem.200305111

    20. [20]

      Maiti, D.; Tong, X. M.; Mou, X. Z.; Yang, K. Carbon-based nanomaterials for biomedical applications: a recent study. Front. Pharmacol. 2019, 9, 01401–16.  doi: 10.3389/fphar.2018.01401

    21. [21]

      Ravishankar, B.; Nayak, S. K.; Kader, M. A. Hybrid composites for automotive applications - a review. J. Reinf. Plast. Compos. 2019, 38, 835–845.  doi: 10.1177/0731684419849708

    22. [22]

      Kamran, U.; Heo, Y. J.; Lee, J. W.; Park, S. J. Functionalized carbon materials for electronic devices: a review. Micromachines 2019, 10, 10040234–25.

    23. [23]

      Le, B.; Khaliq, J.; Huo, D. H.; Teng, X. Y.; Shyha, I. A review on nanocomposites. Part 1: mechanical properties. J. Manuf. Sci. Eng. -Trans. ASME 2020, 142, 100801–23.  doi: 10.1115/1.4047047

    24. [24]

      Papageorgiou, D. G.; Li, Z. L.; Liu, M. F.; Kinloch, I. A.; Young, R. J. Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale 2020, 12, 2228–2267.  doi: 10.1039/C9NR06952F

    25. [25]

      Ke, K.; Yue, L.; Shao, H. Q.; Yang, M. B.; Yang, W.; Manas-Zloczower, I. Boosting electrical and piezoresistive properties of polymer nanocomposites via hybrid carbon fillers: a review. Carbon 2021, 173, 1020–1040.  doi: 10.1016/j.carbon.2020.11.070

    26. [26]

      Wang, R.; Zhuo, D.; Weng, Z.; Wu, L.; Cheng, X.; Zhou, Y.; Wang, J.; Xuan, B. A novel nanosilica/graphene oxide hybrid and its flame retarding epoxy resin with simultaneously improved mechanical, thermal conductivity, and dielectric properties. J. Mater. Chem. A 2015, 3, 9826–9836.  doi: 10.1039/C5TA00722D

    27. [27]

      Dai, X. Y.; Du, Y. Z.; Yang, J. Y.; Wang, D.; Gu, J. W.; Li, Y. F.; Wang, S.; Xu, B. B.; Kong, J. Recoverable and self-healing electromagnetic wave absorbing nanocomposites. Compos. Sci. Technol. 2019, 174, 27–32.  doi: 10.1016/j.compscitech.2019.02.018

    28. [28]

      Liu, S.; Qin, S. H.; Jiang, Y.; Song, P. A.; Wang, H. Lightweight high-performance carbon-polymer nanocomposites for electromagnetic interference shielding. Compos. Pt. A-Appl. Sci. Manuf. 2021, 145, 106376–30.  doi: 10.1016/j.compositesa.2021.106376

    29. [29]

      Sun, X.; Huang, C.; Wang, L.; Liang, L.; Cheng, Y.; Fei, W.; Li, Y. Recent progress in graphene/polymer nanocomposites. Adv. Mater. 2021, 33, 2001105–28.  doi: 10.1002/adma.202001105

    30. [30]

      Rahmani, Z.; Samadi, M. T.; Kazemi, A.; Rashidi, A. M.; Rahmani, A. R. Nanoporous graphene and graphene oxide-coated polyurethane sponge as a highly efficient, superhydrophobic, and reusable oil spill absorbent. J. Environ. Chem. Eng. 2017, 5, 5025–5032.  doi: 10.1016/j.jece.2017.09.028

    31. [31]

      Zhang, X. T.; Liu, D. Y.; Ma, Y. L.; Nie, J.; Sui, G. X. Super-hydrophobic graphene coated polyurethane (GN@PU) sponge with great oil-water separation performance. Appl. Surf. Sci. 2017, 422, 116–124.  doi: 10.1016/j.apsusc.2017.06.009

    32. [32]

      Baek, S. H.; Kim, J. H. Polyurethane composite foams including silicone-acrylic particles for enhanced sound absorption via increased damping and frictions of sound waves. Compos. Sci. Technol. 2020, 198, 108325–7.  doi: 10.1016/j.compscitech.2020.108325

    33. [33]

      Tang, Y. M.; Guo, Q. Q.; Chen, Z. M.; Zhang, X. X.; Lu, C. H. In-situ reduction of graphene oxide-wrapped porous polyurethane scaffolds: synergistic enhancement of mechanical properties and piezoresistivity. Compos. Pt. A-Appl. Sci. Manuf. 2019, 116, 106–113.  doi: 10.1016/j.compositesa.2018.10.025

    34. [34]

      Shao, W.; Liu, X. F.; Min, H. H.; Dong, G. H.; Feng, Q. Y.; Zuo, S. L. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl. Mater. Interfaces 2015, 7, 6966–6973.  doi: 10.1021/acsami.5b00937

    35. [35]

      Shuai, C. J.; Guo, W.; Wu, P.; Yang, W. J.; Hu, S.; Xia, Y.; Feng, P. A graphene oxide-Ag co-dispersing nanosystem: dual synergistic effects on antibacterial activities and mechanical properties of polymer scaffolds. Chem. Eng. J. 2018, 347, 322–333.  doi: 10.1016/j.cej.2018.04.092

    36. [36]

      Bao, Q.; Zhang, D.; Qi, P. Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J. Colloid Interface Sci. 2011, 360, 463–470.  doi: 10.1016/j.jcis.2011.05.009

    37. [37]

      Jeronsia, J. E.; Ragu, R.; Sowmya, R.; Mary, A. J.; Das, S. J. Comparative investigation on camellia sinensis mediated green synthesis of Ag and Ag/GO nanocomposites for its anticancer and antibacterial efficacy. Surf. Interfaces 2020, 21, 100787–10.  doi: 10.1016/j.surfin.2020.100787

    38. [38]

      Chen, Y. N.; Hsueh, Y. H.; Hsieh, C. T.; Tzou, D. Y.; Chang, P. L. Antiviral activity of graphene-silver nanocomposites against non-enveloped and enveloped viruses. Int. J. Environ. Res. Public. Health 2016, 13, 040430–12.

    39. [39]

      Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.  doi: 10.1021/nn1006368

    40. [40]

      Yoo, M. J.; Park, H. B. Effect of hydrogen peroxide on properties of graphene oxide in Hummers method. Carbon 2019, 141, 515–522.  doi: 10.1016/j.carbon.2018.10.009

    41. [41]

      Dong, L.; Yang, J.; Chhowalla, M.; Loh, K. P. Synthesis and reduction of large sized graphene oxide sheets. Chem. Soc. Rev. 2017, 46, 7306–7316.  doi: 10.1039/C7CS00485K

    42. [42]

      Kalishwaralal, K.; Deepak, V.; Pandian, S. R. K.; Gurunathan, S. Biological synthesis of gold nanocubes from Bacillus licheniformis. Bioresour. Technol. 2009, 100 21, 5356–5358.

    43. [43]

      Agata, Y.; Iwao, Y.; Miyagishima, A.; Itai, S. Novel mathematical model for predicting the dissolution profile of spherical particles under non-sink conditions. Chem. Pharm. Bull. 2010, 58, 511–515.  doi: 10.1248/cpb.58.511

    44. [44]

      Lobos, J.; Velankar, S. How much do nanoparticle fillers improve the modulus and strength of polymer foams? J. Cell. Plast. 2016, 52, 57–88.  doi: 10.1177/0021955X14546015

  • 加载中
    1. [1]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    2. [2]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    3. [3]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    6. [6]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    7. [7]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    8. [8]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    9. [9]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    10. [10]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    11. [11]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    12. [12]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    13. [13]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    14. [14]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    15. [15]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    16. [16]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    17. [17]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    18. [18]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    19. [19]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    20. [20]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

Metrics
  • PDF Downloads(7)
  • Abstract views(631)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return