Citation: Feng-Lin SHAN, Huan SONG, Xue-Zhi GAO, Bing LI, Xiao-Xia MA. Synthesis, Crystal Structure and DNA-Binding Property of a New Cu(II) Complex Based on 4-(Trifluoro-methyl)nicotinic Acid[J]. Chinese Journal of Structural Chemistry, ;2022, 41(2): 220205. doi: 10.14102/j.cnki.0254-5861.2011-3257 shu

Synthesis, Crystal Structure and DNA-Binding Property of a New Cu(II) Complex Based on 4-(Trifluoro-methyl)nicotinic Acid

  • Corresponding author: Xiao-Xia MA, mxiaoxia1222@163.com
  • Received Date: 17 May 2021
    Accepted Date: 26 July 2021

    Fund Project: the National Natural Science Foundation of China 21763022

Figures(7)

  • A new complex [Cu1.5(tfc)3(H2O)4]·3H2O (1, Htfc = 4-(trifluoro-methyl) nicotinic acid) has been synthesized and characterized by X-ray single-crystal diffraction, elemental analysis, IR spectra and thermo-gravimetric analysis. 1 belongs to orthorhombic system, space group Pccn with a = 44.507(2), b = 10.7710(6), c = 11.7544(7) Å, V = 5634.9(6) Å3, Z = 1, Dc = 1.803 mg·cm-3, F(000) = 3068, μ = 1.266 mm-1, the final R = 0.0488 and wR = 0.1103 with I > 2σ(I). The Cu(II) ion is coordinated by two N and two O atoms from different Htfc as well as two O atoms from two coordinated water molecules, forming a 0D motif with distorted octahedral geometry. The adjacent 0D units are linked into 2D structures through bridge connection coordination mode. In addition, the binding properties of the complex with CT-DNA were investigated by fluorescence and ultraviolet spectra. UV spectra indicate classical intercalation between the complex and CT-DNA. Moreover, the interactions between the ligand and the complex with CT-DNA were studied by EtBr fluorescence probe, which proved that these compounds bind to CT-DNA through an intercalation mode. The binding constants were 0.76 and 1.15 for Htfc and complex 1, which means 1 has stronger interaction with CT-DNA than Htfc.
  • 加载中
    1. [1]

      Jessica, Z. C.; Ahmet, Y.; Min, C.; Zhang, Y. Y.; Zhang, B. C.; Wasa, M. Direct conversion of n-alkylamines to n-propargylamines through C−H activation promoted by Lewis acid/organocopper catalysis: application to late-stage functionalization of bioactive molecules. J. Am. Chem. Soc. 2020, 142, 16493−16505.  doi: 10.1021/jacs.0c08599

    2. [2]

      Deng, Z. Y.; Pei, Y. Q.; Wang, S. S.; Zhou, B.; Hou, X. Y.; Li, J.; Li, B.; Liang, H. S. Designable carboxymethylpachymaran/metal ion architecture on sunflower sporopollenin exine capsules as delivery vehicles for bioactive macromolecules. J. Agric. Food. Chem. 2020, 68, 13990−14000.  doi: 10.1021/acs.jafc.0c05169

    3. [3]

      Woods, J. J.; Cao, J.; Lippert, A. R. Characterization and biological activity of a hydrogen sulfide-releasing red light-activated ruthenium(II) complex. J. Am. Chem. Soc. 2018, 140, 12383−12387.  doi: 10.1021/jacs.8b08695

    4. [4]

      Zakhar, V. R.; Vladimir, A. P.; Marina, A. K.; Andrey, A. B.; Alexei, I. K. Structure and formation of luminescent centers in light-up ag cluster-based DNA probes. J. Phys. Chem. C 2021, 125, 3542−3552.  doi: 10.1021/acs.jpcc.0c09973

    5. [5]

      Mardanya, S.; Srikanta, K.; Debiprasad, M.; Sujoy, B. Homo- and heterobimetallic ruthenium(II) and osmium(II) complexes based on a pyrene-biimidazolate spacer as efficient DNA-binding probes in the near-infrared domain. Inorg. Chem. 2016, 55, 3475−3489.  doi: 10.1021/acs.inorgchem.5b02912

    6. [6]

      Izabela, K.; Johann, B.; Sebastian, M.; Philip, T. Strong plasmonic enhancement of a single peridinin-chlorophyll a-protein complex on DNA origami-based optical antennas. ACS. Nano. 2018, 12, 1650−1655.  doi: 10.1021/acsnano.7b08233

    7. [7]

      Lori, M. O.; Thomas, D.; Tullius, M. High-resolution in vivo footprinting of a protein-DNA complex using γ-radiation. J. Am. Chem. Soc. 2000, 122, 5901−5902.  doi: 10.1021/ja000285f

    8. [8]

      Spence, P.; Fielden, J.; Waller, Z. A. E. Beyond solvent exclusion: i-motif detecting capability and an alternative DNA light-switching mechanism in a ruthenium(II) polypyridyl complex. J. Am. Chem. Soc. 2020, 142, 13856−13866.  doi: 10.1021/jacs.0c04789

    9. [9]

      Simon, J.; Stammler, A.; Oldengott, J.; Bögge, H.; Glaser, T. Proof of phosphate diester binding ability of cytotoxic DNA-binding complexes. Inorg. Chem. 2020, 59, 14615−14619.

    10. [10]

      Li, X.; Luo, X. J.; Yang, Y.; Ma, L.; Wang, S. L.; Luo, Z. H. Synthesis, structure, and DNA binding of a platinum(II) complex based on the 3, 4, 5-trimethoxy-phenyl-1H-imidazo[4, 5-f][1, 10]phenanthroline. Chin. J. Struct. Chem. 2018, 37, 811−818.

    11. [11]

      Liu, Y. Z.; Gao, H. Y.; Yi, X. G.; Li, D. P.; Li, Y. X. Crystal structures and DNA binding properties of 2-naphthoxyacetic acid Cu(II) complexes. Chin. J. Struct. Chem. 2019, 8, 1362−1369.

    12. [12]

      Jana, S.; Ray, A.; Chandra, A.; Fallah, M. S. E.; Das, S.; Sinha, C. Studies on magnetic and dielectric properties of antiferromagnetically coupled dinuclear Cu(II) in a one-dimensional Cu(II) coordination polymer. ACS. Omega. 2020, 5, 274−280.  doi: 10.1021/acsomega.9b02650

    13. [13]

      Schneider, J. D.; Smith, B. A.; Williams, A. G.; Powell, R. D.; Perez, F.; Rowe, T. G.; Lei, Y. Synthesis and characterization of Cu(II) and mixed-valence Cu(I) Cu(II) clusters supported by pyridylamide ligands. Inorg. Chem. 2020, 59, 5433−5446.  doi: 10.1021/acs.inorgchem.0c00008

    14. [14]

      Gould, N. S.; Xu, B. J. Temperature-programmed desorption of pyridine on zeolites in the presence of liquid solvents. ACS. Catal. 2018, 8, 8699−8708.  doi: 10.1021/acscatal.8b02536

    15. [15]

      Mugnaini, C.; Kostrzewa, M.; Kostrzewa, M.; Mahmoud, M. A.; Brizzi, A.; Lamponi, S.; Giorgi, G.; Ferlenghi, F.; Vacondio, F.; Maccioni, P.; Colombo, G.; Mor, M.; Starowicz, K.; Marzo, D. V.; Ligresti, A.; Corelli, F. Design, synthesis, and physicochemical and pharmacological profiling of 7-hydroxy-5-oxopyrazolo[4, 3-b]pyridine-6-carboxamide derivatives with antiosteoarthritic activity in vivo. J. Med. Chem. 2020, 63, 7369−7391.  doi: 10.1021/acs.jmedchem.0c00595

    16. [16]

      Li, B.; Wang, J. K.; Song, H.; Wu, H. P.; Chen, X. Y.; Ma, X. X. Synthesis, crystal structure, and BSA interaction with a new Co(II) complex based on 5-(trifluoromethyl)pyridine-2-carboxylic acid. J. Coord. Chem. 2019, 166, 38−36.

    17. [17]

      Vadori, M.; Pacor, S.; Vita, F.; Zorzet, S.; Cocchietto, M.; Sava, G. Features and full reversibility of the renal toxicity of the ruthenium-based drug NAMI-A in mice. J. Inorg. Biochem. 2013, 118, 21−27.  doi: 10.1016/j.jinorgbio.2012.09.018

    18. [18]

      Wang, J. K.; Li, B.; Wu, H. P.; Tian, X. Y.; Ma, X. X. Synthesis, crystal structure and DNA-binding property of a Mn(II) complex based on 5-(trifluoromethyl)pyridine-2-carboxylic acid. Chin. J. Struct. Chem. 2019, 8, 1349−1355.

    19. [19]

      Swanson, D. M.; Dubin, A. E.; Shah, C. Identification and biological evaluation of 4-(3-trifluorom ethylpyridin-2-yl)piperazine-1-carboxylic acid (5-trifluoromethylpyridin-2-yl)amide, a high affinity TRPV1 (VR1) vanilloid receptor antagonist. J. Med. Chem. 2005, 48, 1857–1872.  doi: 10.1021/jm0495071

    20. [20]

      Asahina, Y.; Araya, I. I.; Wase, K. Synthesis and antibacterial activity of the 4-quinolone-3-carboxylic acid derivatives having a trifluoromethyl group as a novel N-1 substituent. J. Med. Chem. 2005, 48, 3443–3446.  doi: 10.1021/jm040204g

    21. [21]

      Akher, B. F.; Farrokhzadeh, A.; Ravenscroft, N.; Kuttel, M. M. Mechanistic study of potent fluorinated EGFR kinase Inhibitors with a quinazoline scaffold against L858R/T790M/C797S resistance mutation: unveiling the fluorine substituent cooperativity effect on the inhibitory activity. J. Phys. Chem. 2020, 124, 5813−5824.  doi: 10.1021/acs.jpcb.0c03440

    22. [22]

      Shang, Y.; Feng, X.; Li, J.; Wang, Y.; Wang, L.; Li, Z. Tow novel hydroxide anions bridged lanthanide coordination polymers based on fluorinated carboxylate ligand: structures, luminescence and magnetic property. Inorg. Chem. Commun. 2019, 105, 47−54.  doi: 10.1016/j.inoche.2019.04.003

    23. [23]

      Morya, V.; Walia, S.; Mandal, B. B.; Ghoroi, C.; Bhatia, D. Functional DNA based hydrogels: development, properties and biological applications. ACS. Biomater. Sci. Eng. 2020, 6, 6021−6035.  doi: 10.1021/acsbiomaterials.0c01125

    24. [24]

      Sheldrick, G. M. SADABS. Program for Empirical Absorption Correction of Area Detector. University of Göttingen, Germany 1996.

    25. [25]

      Sheldrick, G. M. SHELXL-97, Program for the Crystal Structure Refinement. University of Göttingen, Germany 1997.

    26. [26]

      Sheldrick. G. M. SHELXL-2014, Program for Crystal Structural Refinement. University of Göttingen, Germany 2014.

    27. [27]

      Iqbal, M.; Ali, S.; Tahir, M. N. Octahedral copper(II) carboxylate complex: synthesis, structural description, DNA-binding and anti-bacterial studies. J. Coord. Chem. 2018, 71, 991−1002.  doi: 10.1080/00958972.2018.1456655

    28. [28]

      Ren, J. L.; Jin, X. D.; Qiu, J. R.; Liang, H. J.; Li, B. A new Co(II) coordination compound constructed by tripyridyltriazole and pyromellitic acid: synthesis, crystal structure and antifungal activity. Chin. J. Struct. Chem. 2017, 36, 33−39.

    29. [29]

      Lim, E. K.; Teoh, S. G.; Goh, S. M.; Ch'ng, C. D.; Ng, C. H.; Fun, H. K.; Rosli, M. M.; Najimudin, N.; Beh, H. K.; Seow, L. J.; Ismail, N.; Ismail, Z.; Asmawi, M. Z.; Cheah, Y. H. Characterization, nucleolytic, cytotoxic and antibacterial property of tetrakis(μ-4-chloro-2-nitrobenzoato-k2O, O΄)) bis[aquacopper(II)], tetrakis(μ-2-chloro-6-fluorobenzoato-k2O, O΄)bis[aquacopper(II)] and tetrakis(μ-2-chlorobenzoato-k2O, O΄)bis[aquacopper(II)]. Polyhedron 2009, 25, 1320−1330.

    30. [30]

      Ren, Y. W.; Hu, H. N.; Zhang, J.; Zhuang, X. J.; Li, D. P.; Li, Y. X. Characterization and DNA interaction of lanthanide complexes based on thiourea ligand. Chin. J. Struct. Chem. 2021, 40, 47−54.

    31. [31]

      Marjolein, E. Z.; Velthoen, S. N.; Bert, M. W. Probing acid sites in solid catalysts with pyridine UV-Vis spectroscopy. Phys. Chem. Chem. Phys. 2018, 20, 21647.  doi: 10.1039/C8CP03991G

    32. [32]

      Totta, X.; Hatzidimitriou, A. G.; Papadopoulos, A. N. Nickel(II)-naproxen mixed-ligand complexes: synthesis, structure, antioxidant activity and interaction with albumins and calf-thymus DNA. New. J. Chem. 2017, 41, 4478−4492.  doi: 10.1039/C7NJ00257B

    33. [33]

      Jain, S.; Khan, T. A.; Patil, Y. P. Bio-affinity of copper(II) complexes with nitrogen and oxygen donor ligands: synthesis, structural studies and in vitro DNA and HSA interaction of copper(II) complexes. J. Photochem. Photobiol. B 2017, 174, 35−43.  doi: 10.1016/j.jphotobiol.2017.06.035

    34. [34]

      Liu, Y. Z.; Gao, H. Y.; Yi, X. G.; Li, D. P.; Li, Y. X. Crystal structures and DNA binding properties of 2-naphthoxyacetic acid Cu(II) complexes. Chin. J. Struct. Chem. 2019, 38, 1362−1369.

    35. [35]

      Iqbal, M.; Ali, S.; Rehman, Z.; Muhammad, N.; Sohail, M.; Pandarinathan, V. Synthesis, crystal structure description, electrochemical, and DNA binding studies of "paddlewheel" copper(II) carboxylate. J. Coord. Chem. 2014, 67, 1731−1745.  doi: 10.1080/00958972.2014.926337

    36. [36]

      Mcmillan, D. R.; Mcnett, K. M. Photoprocesses of copper complexes that bind to DNA. Chem. Rev. 1998, 3, 1201−1220.

    37. [37]

      Liu, W. Q.; Zhou, S. L.; Fan, M. Z.; Pan, Z. Q.; Chen, Y. F. Synthesis and crystal structure of a dinuclear Cu(II) complex based on a carboxyl-substituted1H-1, 2, 3-triazole and its DNA cleavage activity. Chin. J. Struct. Chem. 2015, 6, 917−924.

    38. [38]

      Yang, M. Y.; Zhai, Z. W.; Sun, Z. H. A facile one-pot synthesis of novel 1, 2, 4-triazolo[4, 3-a]pyridine derivatives containing the trifluoromethyl moiety using microwave irradiation. J. Chem. Res. 2015, 39, 521−523.  doi: 10.3184/174751915X14400874295745

  • 加载中
    1. [1]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    2. [2]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    5. [5]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    6. [6]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    7. [7]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    8. [8]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    9. [9]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    10. [10]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    11. [11]

      Yukun CHENKexin FENGBolun ZHANGWentao SONGJianjun ZHANG . Syntheses, crystal structures, and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ) metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1227-1234. doi: 10.11862/CJIC.20240448

    12. [12]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    13. [13]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    14. [14]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    15. [15]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    16. [16]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    17. [17]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    18. [18]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    19. [19]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    20. [20]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

Metrics
  • PDF Downloads(1)
  • Abstract views(520)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return