Citation: Jiang WU, Jin-Zhong GU. Synthesis, Structures, Luminescence and Catalytic Activity in the Knoevenagel Condensation Reaction of Two Cd(II) Coordination Polymers Based on a Biphenyl-dicarboxylic Acid[J]. Chinese Journal of Structural Chemistry, ;2022, 41(2): 220203. doi: 10.14102/j.cnki.0254-5861.2011-3250 shu

Synthesis, Structures, Luminescence and Catalytic Activity in the Knoevenagel Condensation Reaction of Two Cd(II) Coordination Polymers Based on a Biphenyl-dicarboxylic Acid

  • Corresponding author: Jiang WU, wujiang@lzu.edu.cn Jin-Zhong GU, gujzh@lzu.edu.cn
  • Received Date: 11 May 2021
    Accepted Date: 26 July 2021

    Fund Project: the Science and Technology Plan of Qinghai Province 2018-ZJ-919

Figures(14)

  • Two cadmium(II) coordination polymers, namely [Cd(μ-dda)(H2biim)]n (1) and [Cd(μ4-dda)(py)]n (2) have been constructed hydrothermally using H2dda (H2dda = 4, 4΄-dihydroxybiphenyl-3, 3΄-dicarboxylic acid), H2biim (H2biim = 2, 2΄-biimidazole), py (py = pyridine), and cadmium chloride at 160 ℃. The products were isolated as stable crystalline solids and were characterized by IR spectra, elemental analyses, thermogravimetric analyses (TGA), and single-crystal X-ray diffraction analyses. Single-crystal X-ray diffraction analyses revealed that both compounds crystallize in the monoclinic system, space group C2/c. Compound 1 discloses a 1D chain structure. Compound 2 features a 3D framework. The luminescent properties of compounds 1 and 2 were evaluated. Besides, the catalytic activities in the Knoevenagel condensation reaction of two compounds were investigated. Compound 1 exhibits an excellent catalytic activity in the Knoevenagel condensation reaction at room temperature.
  • 加载中
    1. [1]

      Zheng, X. D.; Lu, T. B. Constructions of helical coordination compounds. CrystEngComm. 2010, 12, 324−336.  doi: 10.1039/B911991D

    2. [2]

      Fan, W. D.; Yuan, S.; Wang, W. J.; Feng, L.; Liu, X. P.; Zhang, X. R.; Wang, X.; Kang, Z. X.; Dai, F. N.; Yuan, D. Q.; Sun, D. F.; Zhou, H. C. Optimizing multivariate metal-organic frameworks for efficient C2H2/CO2 separation. J. Am. Chem. Soc. 2020, 142, 8728–8737.  doi: 10.1021/jacs.0c00805

    3. [3]

      Wang, H.; Li, J. Microporous metal-organic frameworks for adsorptive separation of C5–C6 alkane isomers. Acc. Chem. Res. 2019, 52, 1968–1978.  doi: 10.1021/acs.accounts.8b00658

    4. [4]

      Xiao, J. D.; Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356–366.  doi: 10.1021/acs.accounts.8b00521

    5. [5]

      Gu, J. Z.; Wen, M.; Cai, Y.; Shi, Z. F.; Arol, A. S.; Kirillova, M. V.; Kirillov, A. M. Metal-organic architectures assembled from multifunctional polycarboxylates: hydrothermal self-assembly, structures, and catalytic activity in alkane oxidation. Inorg. Chem. 2019, 58, 2403−2412.  doi: 10.1021/acs.inorgchem.8b02926

    6. [6]

      Gu, J. Z.; Wen, M.; Cai, Y.; Shi, Z. F.; Nesterov, D. S.; Kirillova, M. V.; Kirillov, A. M. Cobalt(II) coordination polymers assembled from unexplored pyridine-carboxylic acids: structural diversity and catalytic oxidation of alcohols. Inorg. Chem. 2019, 58, 5875−5885.  doi: 10.1021/acs.inorgchem.9b00242

    7. [7]

      Roy, M.; Adhikary, A.; Mondal, A. K.; Mondal, R. Multifunctional properties a 1D helical Co(II) coordination polymers: toward single-ion magnetic behavior and efficient dye degradation. ACS Omega 2018, 3, 15315−15324.  doi: 10.1021/acsomega.8b02212

    8. [8]

      Salitros, I.; Herchel, R.; Fuhr, O.; Gonzalez-Prieto, R.; Ruben, M. Polynuclear iron(II) complexes with 2, 6-bis(pyrazol-1-yl)-pyridineanthracence ligands exhibiting highly distorted high-spin centers. Inorg. Chem. 2019, 58, 4310−4319.  doi: 10.1021/acs.inorgchem.8b03432

    9. [9]

      Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285.  doi: 10.1039/C6CS00930A

    10. [10]

      Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162.  doi: 10.1021/cr200101d

    11. [11]

      Haddad, S.; Lázaro, I. A.; Fantham, M.; Mishra, A.; Silvestre-Albero, J.; Osterrieth, J. W. M.; Schierle, G. S. K.; Kaminski, C. F.; Forgan, R. S.; Fairen-Jimenez, D. Design of a functionalized metal-organic framework system of enhanced targeted delivery to mitochondria. J. Am. Chem. Soc. 2020, 142, 6661–6674.  doi: 10.1021/jacs.0c00188

    12. [12]

      Zhao, S. Q.; Gu, J. Z. Syntheses, structures and catalytic properties of two Mn(II) and Cd(II) coordination polymers through in situ ligand reaction. Chin. J. Struct. Chem. 2021, 40, 785–796.

    13. [13]

      Zhou, W.; Huang, D. D.; Wu, Y. P.; Zhao, J.; Wu, T.; Zhang, J.; Li, D. S.; Sun, C. H.; Feng, P. Y.; Bu, X. H. Stable hierarchical bimetal-organic nanostructures as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2019, 58, 4227–4231.  doi: 10.1002/anie.201813634

    14. [14]

      Huang, D. D.; Wu, X. Q.; Tian, J. W.; Wang, X. K.; Zhou, Z. H.; Li, D. S. Assembling of a novel 3D Ag(I)-MOFs with mixed ligands tactics: syntheses, crystal structure and catalytic degradation of nitrophenol. Chin. Chem. Lett. 2018, 29, 845–848.  doi: 10.1016/j.cclet.2017.09.043

    15. [15]

      Liu, S.; Wang, X.; Yu, H. G.; Wu, Y. P.; Li, B.; Lan, Y. Q.; Wu, T.; Zhang, J.; Li, D. S. Two new pseudo-isomeric nickel(II) metal-organic frameworks with efficient electrocatalytic activity toward methanol oxidation. Rare Met. 2021, 40, 489–498.  doi: 10.1007/s12598-020-01596-x

    16. [16]

      Gu, J. Z.; Wen, M.; Liang, X. X.; Shi, Z. F.; Kirillova, M. V.; Kirillov, A. M. Multifunctional aromatic carboxylic acids as versatile building blocks for hydrothermal design of coordination polymers. Crystals 2018, 8, 83.  doi: 10.3390/cryst8020083

    17. [17]

      Zhao, S. Q.; Gu, J. Z. Synthesis, structure and catalytic properties of Mn(II) coordination polymer through in situ ligand reaction. Chin. J. Inorg. Chem. 2021, 37, 751–757.

    18. [18]

      Li, Y.; Wu, J.; Gu, J. Z.; Qiu, W. D.; Feng, A. S. Temperature-dependent syntheses of two manganese(II) coordination compounds based on an ether-bridged tetracarboxylic acid. Chin. J. Struct. Chem. 2020, 39, 727–736.

    19. [19]

      Agarwal. R. A.; Gupta, A. K.; De, D. Flexible Zn-MOF exhibiting selective CO2 adsorption and efficient Lewis acidic catalytic activity. Cryst. Grwoth Des. 2019, 19, 2010−2018.  doi: 10.1021/acs.cgd.8b01462

    20. [20]

      Gu, J. Z.; Wan, S. M.; Dou, W.; Kirillova, M. V.; Kirillov, A. M. Coordination polymers from unexplored biphenyl-tricarboxylate linker: hydrothermal synthesis, structural traits and catalytic cyanosilylation. Inorg. Chem. Front. 2021, 8, 1229–1242.  doi: 10.1039/D0QI01230K

    21. [21]

      Gu, J. Z.; Wan, S. M.; Kirillova, M. V.; Kirillov, A. M. H-bonded and metal(II)-organic architectures assembled from an unexplored aromatic tricarboxylic acid: structural variety and functional properties. Dalton Trans. 2020, 49, 7197–7209.  doi: 10.1039/D0DT01261K

    22. [22]

      Maserati, L.; Meckler, S. M.; Li, C. Y.; Helms, B. A. Minute-MOFs: ultrafast synthesis of M2(dobpdc) metal-organic frameworks from divalent metal oxide colloidal nanocrystals. Chem. Mater. 2016, 28, 1581–1588.  doi: 10.1021/acs.chemmater.6b00494

    23. [23]

      Zheng, J.; Barpaga, D.; Trump, B. A.; Shetty, M.; Fan, Y. Z.; Bhattacharya, P.; Jenks, J. J.; Su, C. Y.; Brown, C. M.; Maurin, G.; McGrail, B. P.; Motkuri, R. K. Molecular insight into fluorocarbon adsorption in pore expanded metal-organic framework analogs. J. Am. Chem. Soc. 2020, 142, 3002–3012.  doi: 10.1021/jacs.9b11963

    24. [24]

      Siegelman, R. L.; Milner, P. J.; Forse, A. C.; Lee, J. H.; Colwell, K. A.; Neaton, J. B.; Reimer, J. A.; Weston, S. C.; Long, J. R. Water enables efficient CO2 capture from natural gas flue emissions in an oxidation-resistant diamine-appended metal-organic framework. J. Am. Chem. Soc. 2019, 141, 13171–13186.  doi: 10.1021/jacs.9b05567

    25. [25]

      Sheldrick, G. M. SHELXS 97, Program for Solution of Crystal Structure. University of Göttingen, Germany 1997.

    26. [26]

      Sheldrick, G. M. SHELXL 97, Program for Refinement of Crystal Structure. University of Göttingen, Germany 1997.

    27. [27]

      Gu, J. Z.; Cai, Y.; Wen, M.; Shi, Z. F.; Kirillov, A. M. A new series of Cd(II) metal-organic architectures driven by soft ether-bridged tricarboxylate spacers: synthesis, structural and topological versatility, and photocatalytic properties. Dalton. Trans. 2018, 47, 14327−14339.  doi: 10.1039/C8DT02467G

    28. [28]

      Gu, J. Z.; Liang, X. X.; Cui, Y. H.; Wu, J.; Shi, Z. F.; Kirillov, A. M. Introducing 2-(2-carboxyphenoxy)terephthalic acid as a new versatile building block for design of diverse coordination polymers: synthesis, structural features, luminescence sensing, and magnetism. CrystEngComm. 2017, 19, 2570–2588.  doi: 10.1039/C7CE00219J

    29. [29]

      Gu, J. Z.; Lv, D. Y.; Gao, Z. Q.; Liu, J. Z.; Dou, W.; Tang, Y. Synthesis, structures, luminescent and magnetic properties of four coordination polymers with the flexible 1, 3-phenylenediacetate ligands. J. Solid State Chem. 2011, 184, 675–683.  doi: 10.1016/j.jssc.2011.01.030

    30. [30]

      Loukopoulos, E.; Kostakis, G. E. Review: recent advances of one-dimensional coordination polymers as catalysts. J. Coord. Chem. 2018, 71, 371–410.  doi: 10.1080/00958972.2018.1439163

    31. [31]

      Hu, L.; Hao, G. X.; Luo, H. D.; Ke, C. X.; Shi, G.; Lin, J.; Lin, X. M.; Qazi, U. Y.; Cai, Y. P. Bifunction 2D Cd(II)-based metal-organic framework as efficient heterogeneous catalyst for the formation of C–C bond. Cryst. Growth Des. 2018, 18, 2883–2889.  doi: 10.1021/acs.cgd.7b01728

    32. [32]

      Zhang, Y. W.; Su, K. Z.; Hao, M.; Liu, L.; Han, Z. B.; Yuan, D. Q. Two metal-organic frameworks based on pyridyl-tricarboxylate ligands as size-selective catalysts for solvent-free cyanosilylation reaction. CrystEngComm. 2018, 20, 6070–6076.  doi: 10.1039/C8CE00694F

  • 加载中
    1. [1]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    2. [2]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    3. [3]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    4. [4]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    5. [5]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    6. [6]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    7. [7]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    8. [8]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    9. [9]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    10. [10]

      Yu BAIJijiang WANGLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A cadmium(Ⅱ) coordination polymer based on a semirigid tetracarboxylate ligand for highly selective detection of Fe3+ and 4-nitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1217-1226. doi: 10.11862/CJIC.20240457

    11. [11]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    12. [12]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    13. [13]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

    14. [14]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    15. [15]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    16. [16]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    17. [17]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    18. [18]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    19. [19]

      Xiang WangQingping SongZixiang HeGong ZhangTengfei MiaoXiaoxiao ChengWei Zhang . Constructing diverse switchable circularly polarized luminescence via a single azobenzene polymer film. Chinese Chemical Letters, 2025, 36(1): 110047-. doi: 10.1016/j.cclet.2024.110047

    20. [20]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

Metrics
  • PDF Downloads(2)
  • Abstract views(521)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return