Citation: Meng-Qi PAN, Run-Qi YANG, Yaseen MUHAMMAD, Kun-Tong CAI, Feng HAN, Hao-Chen ZHANG, Yuan-Qing NIU, Hao WANG. Crystal Structure, Fe3+ Luminescence Sensing and Color Tuning of 2D Lanthanide-metal-organic Frameworks Constructed from Tricarboxylic Acid Ligand[J]. Chinese Journal of Structural Chemistry, ;2022, 41(2): 220202. doi: 10.14102/j.cnki.0254-5861.2011-3243 shu

Crystal Structure, Fe3+ Luminescence Sensing and Color Tuning of 2D Lanthanide-metal-organic Frameworks Constructed from Tricarboxylic Acid Ligand

  • Corresponding author: Hao WANG, wangh@bipt.edu.cn
  • Received Date: 30 April 2021
    Accepted Date: 15 July 2021

    Fund Project: the High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-year Plan CIT & TCD201904044URT program of Beijing Institute of Petrochemical Technology 2020J00009

Figures(11)

  • A new lanthanide metal-organic framework (MOF) [Eu(BTB)(phen)(DMF)]žDMF (1, DMF = N, N-dimethylformamide) was synthesized using H3BTB (1, 3, 5-tri(4-carboxyphenyl)benzene) and phen (1, 10-phenanthroline) under solvothermal conditions. The structure of the prepared MOF was characterized by single-crystal X-ray diffraction analyses, elemental analysis, fluorescence spectrum, FT-IR spectroscopy, powder X-ray diffraction and thermogravimetric analyses. The structure of 1 can be viewed as a 3-D supramolecular network, which is formed by the stacking of 2D layers through π-π interaction. The luminescence explorations revealed that 1 possesses favorable selectivity and sensitivity for testing Fe3+. Additionally, color tuning was achieved by varying Eu3+: Tb3+ ratios in the reaction mixtures.
  • 加载中
    1. [1]

      Cheng, X. F.; Hu, J. S.; Li, J. X.; Zhang, M. D. Tunable emission and selective luminescence sensing for nitro-pollutants and metal ions based on bifunctional lanthanide metal-organic frameworks. J. Lumin. 2020, 221, 117100−10.  doi: 10.1016/j.jlumin.2020.117100

    2. [2]

      Yao, S. L.; Xiong, Y. C.; Tian, X. M.; Liu, S. J.; Xu, H.; Zheng, T. F.; Chen, J. L.; Wen, H. R. A multifunctional benzothiadiazole-based fluorescence sensor for Al3+, Cr3+ and Fe3+. CrystEngComm 2021, 23, 1898−1905.  doi: 10.1039/D1CE00060H

    3. [3]

      Yao, Q. X.; Tian, M. M.; Wang, Y.; Meng, Y. J.; Wang, J.; Yao, Q. Y.; Zhou, X.; Yang, H.; Wang, H. W.; Li, Y. W.; Zhang, J. A robust, water-stable, and multifunctional praseodymium-organic framework showing permanent porosity, CO2 adsorption properties, and selective sensing of Fe3+ ion. Chin. J. Struct. Chem. 2020, 39, 1862−1870.

    4. [4]

      Chandra Rao, P.; Mandal, S. Europium-based metal-organic framework as a dual luminescence sensor for the selective detection of the phosphate anion and Fe3+ ion in aqueous media. Inorg. Chem. 2018, 57, 11855−11858.  doi: 10.1021/acs.inorgchem.8b02017

    5. [5]

      Zhang, Z.; Fang, Q. H.; Zhuang, Z. Y.; Han, Y.; Li, L. Y.; Yu, Y. Europium activated aluminum organic frameworks for highly selective and sensitive setection of Fe3+ and Cr(Ⅵ) in aqueous solution. Chin. J. Struct. Chem. 2020, 39, 1958−1964.

    6. [6]

      Guo, X. H.; Li, Y. S.; Peng, Q. Y.; Duan, Z. M.; Li, M. X.; Shao, M.; He, X. Dual functional three-dimensional LnMOFs for luminescence sensing of nitrobenzene and Fe3+ ions. Polyhedron 2017, 133, 238−244.  doi: 10.1016/j.poly.2017.04.033

    7. [7]

      Wu, N.; Guo, H.; Wang, X. Q.; Sun, L.; Zhang, T. T.; Peng, L. P.; Yang, W. A water-stable lanthanide-MOF as a highly sensitive and selective luminescence sensor for detection of Fe3+ and benzaldehyde. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 616, 126093−7.  doi: 10.1016/j.colsurfa.2020.126093

    8. [8]

      Guan, B. B.; Li, Q.; Xu, Y. T.; Chen, L. H.; Wu, Z. S.; Fan, Z. L.; Zhu, W. Highly selective and sensitive detection towards cationic Cu2+ and Fe3+ contaminants via an In-MOF based dual-responsive fluorescence probe. Inorg. Chem. Commun. 2020, 122, 108273−7.  doi: 10.1016/j.inoche.2020.108273

    9. [9]

      Xia, Z. Q.; Ren, C. T.; Xu, W. F.; Li, F.; Qiao, C. F.; Wei, Q.; Zhou, C. S.; Chen, S. P.; Gao, S. L. Ultrasensitive Fe3+ luminescence sensing and supercapacitor performances of a triphenylamine-based TbIII-MOF. J. Solid State Chem. 2020, 282, 121083−7.  doi: 10.1016/j.jssc.2019.121083

    10. [10]

      Yin, X. J.; Li, S. X.; Liao, B. L. Water-stable Ln-exclusive metal-organic framework for highly selective sensing of Fe3+ ions. Dyes Pigm. 2020, 174, 108035−7.  doi: 10.1016/j.dyepig.2019.108035

    11. [11]

      Yu, M. H.; Liu, X. T.; Space, B.; Chang, Z.; Bu, X. H. Metal-organic materials with triazine-based ligands: from structures to properties and applications. Coord. Chem. Rev. 2021, 427, 213518−45.  doi: 10.1016/j.ccr.2020.213518

    12. [12]

      Wang, C. C.; Wang, X.; Liu, W. The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: a state-of-the-art review. Chem. Eng. J. 2020, 391, 1385−8947.

    13. [13]

      Kong, L. J.; Liu, M.; Huang, H.; Xu, Y. H.; Bu, X. H. Metal/covalent-organic framework based cathodes for metal-ion batteries. Adv. Energy Mater. 2021, 2100172−26.

    14. [14]

      Xiao, Q. Q.; Dong, G. Y.; Li, Y. H.; Cui, G. H. Cobalt(II)-based 3D coordination polymer with unusual 4, 4, 4-connected topology as a dual-responsive fluorescent chemosensor for acetylacetone and Cr2O72-. Inorg. Chem. 2019, 58, 15696−15699.  doi: 10.1021/acs.inorgchem.9b02534

    15. [15]

      Zhu, H.; Li, Y. H.; Xiao, Q. Q.; Cui, G. H. Three luminescent Cd(II) coordination polymers containing aromatic dicarboxylate and flexible bis(benzimidazole) ligands as highly sensitive and selective sensors for detection of Cr2O72- oxoanions in water. Polyhedron 2020, 187, 114648−8.  doi: 10.1016/j.poly.2020.114648

    16. [16]

      Liu, A. J.; Xu, F.; Han, S. D.; Pan, J.; Wang, G. M. Mixed-ligand strategy for the construction of photochromic metal-organic frameworks driven by electron-transfer between nonphotoactive units. Cryst. Growth Des. 2020, 20, 7350−7355.  doi: 10.1021/acs.cgd.0c01018

    17. [17]

      Chen, D. D.; Yi, X. H.; Wang, C. C. Preparation of metal-organic frameworks and their composites using mechanochemical methods. Chin. J. Inorg. Chem. 2020, 36, 1805−1821.

    18. [18]

      Ju, P.; Liu, X. C.; Zhang, E. S. A novel 3D Zn-based luminescence metal-organic framework: synthesis, structure and fluorescence enhanced sensing of ammonia vapor in air. Chin. J. Struct. Chem. 2020, 39, 1458−1464.

    19. [19]

      Rocha, J.; Carlos, L. D.; Paz, F. A.; Ananias, D. Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem. Soc. Rev. 2011, 40, 926−940.  doi: 10.1039/C0CS00130A

    20. [20]

      Zhai, L. J.; Jiao, C. X.; Liang, T. F.; Zhang, J.; Niu, X. Y.; Hu, T. P.; Niu, Y. L. Two new coordination polymers based on H4BIPA-TC: syntheses and fluorescence sensing for nitroaromatic compounds and Fe3+ ion. Chin. J. Struct. Chem. 2020, 39, 772−782.

    21. [21]

      Lv, X. L.; Feng, L.; Wang, K. Y.; Xie, L. H.; He, T.; Wu, W.; Li, J. R.; Zhou, H. C. A series of mesoporous rare-earth metal-organic frameworks constructed from organic secondary building units. Angew. Chem. Int. Ed. 2021, 60, 2053−2057.  doi: 10.1002/anie.202011653

    22. [22]

      Lv, X. L.; Feng, L.; Xie, L. H.; He, T.; Wu, W.; Wang, K. Y.; Si, G. R.; Wang, B.; Li, J. R.; Zhou, H. C. Linker desymmetrization: access to a series of rare-earth tetracarboxylate frameworks with eight-connected hexanuclear nodes. J. Am. Chem. Soc. 2021, 143, 2784−2791.  doi: 10.1021/jacs.0c11546

    23. [23]

      Kumar, M.; Li, L. Q.; Zareba, J. K.; Tashi, L.; Sahoo, S. C.; Nyk, M.; Liu, S. J.; Sheikh, H. N. Lanthanide contraction in cction: structural variations in 13 lanthanide(III) thiophene-2, 5-dicarboxylate coordination polymers (Ln = La-Lu, except Pm and Tm) featuring magnetocaloric effect, slow magnetic relaxation, and luminescence-lifetime-based thermometry. Cryst. Growth Des. 2020, 20, 6430−6452.  doi: 10.1021/acs.cgd.0c00611

    24. [24]

      Li, Y. P.; Yang, H. R.; Zhao, Q.; Song, W. C.; Han, J.; Bu, X. H. Ratiometric and selective fluorescent sensor for Zn2+ as an "off-on-off" switch and logic gate. Inorg. Chem. 2012, 51, 9642−9648.  doi: 10.1021/ic300738e

    25. [25]

      D'Vries, R. F.; Gomez, G. E.; Mondragon, L. P.; Onna, D.; Barja, B. C.; Soler-Illia, G. J. A. A.; Ellena, J. 1D lanthanide coordination polymers based on lanthanides and 4΄-hydroxi-4-biphenylcarboxylic acid: synthesis, structures and luminescence properties. J. Solid State Chem. 2019, 274, 322−328.  doi: 10.1016/j.jssc.2019.02.043

    26. [26]

      Yang, Y.; Wang, Y.; Feng, Y.; Song, X.; Cao, C.; Zhang, G.; Liu, W. Three isostructural Eu3+/Tb3+ co-doped MOFs for wide-range ratiometric temperature sensing. Talanta 2020, 208, 120354−6.  doi: 10.1016/j.talanta.2019.120354

    27. [27]

      Zhou, X. J.; Chen, L. N.; Feng, Z. S.; Jiang, S.; Lin, J. Z.; Pang, Y.; Li, L.; Xiang, G. T. Color tunable emission and low-temperature luminescent sensing of europium and terbium carboxylic acid complexes. Inorg. Chim. Acta 2018, 469, 576−582.  doi: 10.1016/j.ica.2017.10.014

    28. [28]

      Zhu, Y. Y.; Xia, T. F.; Zhang, Q.; Cui, Y. J.; Yang, Y.; Qian, G. D. A Eu/Tb mixed lanthanide coordination polymer with rare 2D thick layers: synthesis, characterization and ratiometric temperature sensing. J. Solid State Chem. 2018, 259, 98−103.  doi: 10.1016/j.jssc.2018.01.009

    29. [29]

      Pang, X. L.; Yu, T.; Shen, F. J.; Yu, X. D.; Li, Y. J. Fluorescence sensing of fluoride ions and N, N-dimethylformamide by novel luminescent lanthanide(III) xerogels. J. Lumin. 2018, 204, 169−175.  doi: 10.1016/j.jlumin.2018.08.004

    30. [30]

      Zhai, B.; Xu, H.; Li, Z. Y.; Cao, C. S.; Zhao, B. A water-stable metal-organic framework: serving as a chemical sensor of PO43– and a catalyst for CO2 conversion. Sci. China. Chem. 2017, 60, 1328−1333.

    31. [31]

      Chen, D. M.; Zheng, Y. P.; Fang, S. M. A polyhedron-based porous Tb(III)-organic framework with dual emissions for highly selective detection of Al3+ ion. Inorg. Chem. Commun. 2020, 117, 107967−21.  doi: 10.1016/j.inoche.2020.107967

    32. [32]

      Guo, H.; Wu, N.; Xue, R.; Liu, H.; Li, L.; Wang, M. Y.; Yao, W. Q.; Li, Q.; Yang, W. Multifunctional Ln-MOF luminescent probe displaying superior capabilities for highly selective sensing of Fe3+ and Al3+ ions and nitrotoluene. Colloids Surf. A: Physicochem. Eng. Asp. 2020, 585, 124094−8.  doi: 10.1016/j.colsurfa.2019.124094

    33. [33]

      Liang, G. M.; Wang, S.; Xu, M. Y.; Chen, H. L.; Liang, G. Y.; Gui, L. C.; Wang, X. J. 2D lanthanide coordination polymers constructed from a semi-rigid tricarboxylic acid ligand: crystal structure, luminescence sensing and color tuning. CrystEngComm 2020, 22, 6161−6169.  doi: 10.1039/D0CE00968G

    34. [34]

      Chen, D. M.; Sun, C. X.; Peng, Y.; Zhang, N. N.; Si, H. H.; Liu, C. S.; Du, M. Ratiometric fluorescence sensing and colorimetric decoding methanol by a bimetallic lanthanide-organic framework. Sensor Actuat. B-Chem. 2018, 265, 104−109.  doi: 10.1016/j.snb.2018.03.028

    35. [35]

      Zhan, C.; Ou, S.; Zou, C.; Zhao, M.; Wu, C. D. A luminescent mixed-lanthanide-organic framework sensor for decoding different volatile organic molecules. Anal. Chem. 2014, 86, 6648−6653.  doi: 10.1021/ac5013442

    36. [36]

      Zhou, J.; Li, H.; Zhang, H.; Li, H.; Shi, W.; Cheng, P. A bimetallic lanthanide metal-organic material as a self-calibrating color-gradient luminescent sensor. Adv. Mater. 2015, 27, 7072−7077.  doi: 10.1002/adma.201502760

    37. [37]

      Zhang, F. X.; Li, J. Y.; Zhao, Z. R.; Wang, F. Q.; Pu, Y. Y.; Cheng, H. L. Mixed-LnMOFs with tunable color and white light emission together with multi-functional fluorescence detection. J. Solid State Chem. 2019, 280, 120972−5.  doi: 10.1016/j.jssc.2019.120972

    38. [38]

      Yang, Q. Y.; Pan, M.; Wei, S. C.; Li, K.; Du, B. B.; Su, C. Y. Linear dependence of photoluminescence in mixed Ln-MOFs for color tunability and barcode application. Inorg. Chem. 2015, 54, 5707−5716.  doi: 10.1021/acs.inorgchem.5b00271

    39. [39]

      Zhao, S.; Hao, X. M.; Liu, J. L.; Wu, L. W.; Wang, H.; Wu, Y. B.; Yang, D.; Guo, W. L. Construction of Eu(III)- and Tb(III)-MOFs with photoluminescence for sensing small molecules based on furan-2, 5-dicarboxylic acid. J. Solid State Chem. 2017, 255, 76−81.  doi: 10.1016/j.jssc.2017.07.039

    40. [40]

      Dzesse T, C. N.; Nfor, E. N.; Bourne, S. A. Tripodal carboxylate MOFs with Co(II): transmetallation and gas sorption studies. Polyhedron 2020, 189, 114724−8.  doi: 10.1016/j.poly.2020.114724

    41. [41]

      Wu, Y. P.; Tian, J. W.; Liu, S.; Li, B.; Zhao, J.; Ma, L. F.; Li, D. S.; Lan, Y. Q.; Bu, X. Bi-microporous metal-organic frameworks with cubane [M4(OH)4 ] (M = Ni, Co) clusters and pore-space partition for electrocatalytic methanol oxidation reaction. Angew. Chem. Int. Ed. 2019, 58, 12185−12189.  doi: 10.1002/anie.201907136

    42. [42]

      Guo, X. Y.; Zhao, F.; Liu, H. T.; Wang, Y. Q.; Liu, Z. L.; Gao, E. Q. Five new 2D and 3D coordination polymers based on two new multifunctional pyridyl-tricarboxylate ligands: hydrothermal syntheses, structural diversity, luminescent and magnetic properties. RSC Adv. 2017, 7, 19039−19049.  doi: 10.1039/C7RA02063E

    43. [43]

      He, K. H.; Li, Y. W.; Chen, Y. Q.; Song, W. C.; Bu, X. H. Employing zinc clusters as SBUs to construct (3, 8) and (3, 14)-connected coordination networks: structures, topologies, and luminescence. Cryst. Growth Des. 2012, 12, 2730−2735  doi: 10.1021/cg300218z

    44. [44]

      Zhang, J.; Zheng, B.; Zhao, T. T.; Li, G. H.; Huo, Q. S.; Liu, Y. L. Topological diversities and luminescent properties of lanthanide metal-organic frameworks based on a tetracarboxylate ligand. Cryst. Growth Des. 2014, 14, 2394−2400.  doi: 10.1021/cg500114k

    45. [45]

      Hou, L. L.; Song, Y. H.; Lang, F. X.; Wang, Z. R.; Wang, L. Fluorometric determination of Fe3+ and polychlorinated benzenes based on Tb3+-pyromellitic acid coordination polymer. J. Ind. Eng. Chem. 2020, 90, 145−151.  doi: 10.1016/j.jiec.2020.07.006

    46. [46]

      Cui, J. W.; Hou, S. X.; Li, Y. H.; Cui, G. H. A multifunctional Ni(Ⅱ) coordination polymer: synthesis, crystal structure and applications as a luminescent sensor, electrochemical probe, and photocatalyst. Dalton Trans. 2017, 46, 16911−16924.  doi: 10.1039/C7DT03874G

    47. [47]

      Yu, C.; Sun, X.; Zou, L.; Li, G.; Zhang, L.; Liu, Y. A pillar-layered Zn-LMOF with uncoordinated carboxylic acid sites: high performance for luminescence sensing Fe3+ and TNP. Inorg. Chem. 2019, 58, 4026−4032.  doi: 10.1021/acs.inorgchem.9b00204

    48. [48]

      Huang, W. H.; Ren, J.; Yang, Y. H.; Li, X. M.; Wang, Q.; Jiang, N.; Yu, J. Q.; Wang, F.; Zhang, J. Water-stable metal-organic frameworks with selective sensing on Fe3+ and nitroaromatic explosives, and stimuli-responsive luminescence on lanthanide encapsulation. Inorg. Chem. 2019, 58, 1481−1491.  doi: 10.1021/acs.inorgchem.8b02994

    49. [49]

      Nandi, S.; Reinsch, H.; Banesh, S.; Stock, N.; Trivedi, V.; Biswas, S. Rapid and highly sensitive detection of extracellular and intracellular H2S by an azide-functionalized Al(Ⅲ)-based metal-organic framework. Dalton Trans. 2017, 46, 12856−12864.  doi: 10.1039/C7DT02293J

    50. [50]

      He, T. S.; Lan, Y. L.; Li, Z. Y.; Zhu, L. N.; Li, X. Z. Chiral coordination polymers from a new 2-deoxy-d-ribose derivative linker: syntheses, structures, and Fe3+ fluorescent probe functions. Cryst. Growth Des. 2021, 21, 2233−2242.  doi: 10.1021/acs.cgd.0c01661

  • 加载中
    1. [1]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    2. [2]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    3. [3]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    4. [4]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    5. [5]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    6. [6]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    7. [7]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    8. [8]

      Yanqiong WangYaqi HouFengwei HuoXu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428

    9. [9]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    10. [10]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    11. [11]

      Yanting YangGuorong WangKangjing LiWen YangJing ZhangJian ZhangShili LiXianming Zhang . Tuning up of chromism, luminescence in cadmium-viologen complexes through polymorphism strategy: Inkless erasable printing application. Chinese Chemical Letters, 2025, 36(1): 110123-. doi: 10.1016/j.cclet.2024.110123

    12. [12]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    13. [13]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    14. [14]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    15. [15]

      Liyong DUYi LIUGuoli YANG . Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404

    16. [16]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    17. [17]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

    18. [18]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    19. [19]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    20. [20]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

Metrics
  • PDF Downloads(2)
  • Abstract views(271)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return