Citation: Yi-Man WANG, Zhi-Wei PENG, Jia-Min LIAO, Ao LI, Yuan-Yan LIU, Jing-Jing ZHANG, Nian ZHOU, Xu-Dong LI, Shu LI, Wei MENG. A New Heterometallic 3d-3d Transition Metal Oxo-cluster {Cu6IIMnIII}: Synthesis, Crystal Structure and Magnetic Property[J]. Chinese Journal of Structural Chemistry, ;2021, 40(12): 1661-1667. doi: 10.14102/j.cnki.0254-5861.2011-3229 shu

A New Heterometallic 3d-3d Transition Metal Oxo-cluster {Cu6IIMnIII}: Synthesis, Crystal Structure and Magnetic Property

  • Corresponding author: Wei MENG, mengw198503@163.com
  • Received Date: 21 April 2021
    Accepted Date: 28 May 2021

    Fund Project: the National Natural Science Foundation of China 22001064the Natural Science Foundation of Hunan Province 2020JJ4155the Hunan Province College Students' Innovation Entrepreneurship Training Program 2020 No. 3373the Hunan Province College Students' Innovation Entrepreneurship Training Program 2021 No. 3340the Scientific Research Project of Hunan Province Department of Education 20B105

Figures(5)

  • A new transition metal-antimony oxo-cluster based compound has been synthesized in water under room temperature. Its formula is Na6[Cu6MnSb6(μ3-OH)2(OH)(μ4-O)6(tartrate)6]·20H2O (1), where tartrate represents rac-tartaric acid. It was characterized by elemental analysis, infrared spectrum and X-ray single-crystal diffraction. The compound crystallizes in the monoclinic system, space group P21/n. Structural analyses revealed that two Sb3(μ3-O)(tartrate)3 scaffolds sandwich a Cu6IIMnIII middle layer to form the cluster. In the middle layer, all the seven metal ions lie in an almost regular hexagon, with MnIII ion in the center and six CuII ions along the edges of the hexagon. As a 4-connected node, each cluster is interlinked to its nearest four {Cu6Mn} neighbors through Na+, generating a 3D supramolecular framework. The temperature-dependent magnetic susceptibilities indicated dominating antiferromagnetic interactions in 1 with JCu–Cu = 176.34 and JCu–Mn = –14.44 cm−1.
  • 加载中
    1. [1]

      Zhang, Y. Y.; Gao, W. X.; Lin, L.; Jin, G. X. Recent advances in the construction and applications of heterometallic macrocycles and cages. Coord. Chem. Rev. 2017, 344, 323−344.  doi: 10.1016/j.ccr.2016.09.010

    2. [2]

      Ma, W.; Hu, B.; Jing, K. Q.; Li, Z.; Jin, J. C.; Zheng, S. T.; Huang, X. Y. Proton-conducting layered structures based on transition metal oxo-clusters supported by Sb(III) tartrate scaffolds. Dalton Trans. 2020, 49, 3849−3855.  doi: 10.1039/C9DT04333K

    3. [3]

      Sun, Y. Y.; Lu, D. F.; Sun, Y. X.; Gao, M. Y.; Zheng, N.; Gu, C.; Wang, F.; Zhang, J. Large titanium-oxo clusters as precursors to synthesize the single crystals of Ti-MOFs. ACS Materials Lett. 2021, 3, 64−68.

    4. [4]

      Chen, W. T. A one-dimensional manganese(III)-porphyrin coordination polymer: crystal structure and photophysical properties. Acta Crystallogr. C 2020, 76, 375−380.  doi: 10.1107/S2053229620004350

    5. [5]

      Tan, Y. X.; Wang, F.; Zhang, J. Design and synthesis of multifunctional metal-organic zeolites. Chem. Soc. Rev. 2018, 47, 2130–2144.  doi: 10.1039/C7CS00782E

    6. [6]

      Chen, W. T. Structure, photophysical and electrochemical properties of a copper porphyrin with a three-dimensional framework. Acta Crystallogr. C 2020, 76, 133−138.  doi: 10.1107/S2053229619017273

    7. [7]

      Tan, H. H.; Lv, X. L.; Liu, J. L.; Cheng, Y. F.; Zhou, Q. L.; Lin, Y. T.; Meng, W. A 2D layer copper(II) coordination polymer with 3-nitrophthalic acid: synthesis, crystal structure and copper 3-nitrophthalate metal-organic framework-graphene oxide nanocomposite. Chin. J. Struct. Chem. 2021, 40, 459−464.

    8. [8]

      O'Connor, H. M.; Sanz, S.; Scott, A. J.; Pitak, M. B.; Klooster, W. T.; Coles, S. J.; Chilton, N. F.; McInnes, E. J. L.; Lusby, P. J.; Weihe, H.; Piligkos, S.; Brechin, E. K. [Cr8IIINi6II]n+ heterometallic coordination cubes. Molecules 2021, 26, 757−766.  doi: 10.3390/molecules26030757

    9. [9]

      Dutta, S.; Ghosh, T. K.; Mahapatra, P.; Ghosh, A. Joining of trinuclear heterometallic Cu2II–MII (M = Mn, Cd) nodes by nicotinate to form 1D chains: magnetic properties and catalytic activities. Inorg. Chem. 2020, 59, 14989−15003.  doi: 10.1021/acs.inorgchem.0c01733

    10. [10]

      Diego, R.; Pavlov, A.; Darawsheh, M.; Aleshin, D.; Nehrkorn, J.; Nelyubina, Y.; Roubeau, O.; Novikov, V.; Aromí, G. Coordination [Co2II] and [CoIIZnII] helicates showing slow magnetic relaxation. Inorg. Chem. 2019, 58, 9562−9566.  doi: 10.1021/acs.inorgchem.9b01334

    11. [11]

      Kobayashi, F.; Ohtani, R.; Kusumoto, S.; Lindoy, L. F.; Hayami, S.; Nakamura, M. Wheel-type heterometallic ferromagnetic clusters: [Ni7-XMx(HL)6(μ3-OMe)4(μ3-OH)2]Cl2 (M = Zn, Co, Mn; x = 1, 3). Dalton Trans. 2018, 47, 16422−16428.  doi: 10.1039/C8DT03275K

    12. [12]

      Stetsiuk, O.; Synytsia, V.; Petrusenko, S. R.; Kokozay, V. N.; El-Ghayoury, A.; Cano, J.; Lloret, F.; Julve, M.; Fleury, B.; Avarvari, N. Co-existence of ferro- and antiferromagnetic interactions in a hexanuclear mixed-valence Co2IIIMn2IIMn2IV cluster sustained by a multidentate Schiff base ligand. Dalton Trans. 2019, 48, 11862−11871.  doi: 10.1039/C9DT02503K

    13. [13]

      Liu, J.; Qu, M.; Clérac, R.; Zhang, X. M. A two-dimensional honeycomb coordination network based on fused triacontanuclear heterometallic {Co12Mn18} wheels. Chem. Commun. 2015, 51, 7356−7359.  doi: 10.1039/C5CC01199J

    14. [14]

      Milway, V. A.; Tuna, F.; Farrell, A. R.; Sharp, L. E.; Parsons, S.; Murrie, M. Directed synthesis of {Mn18Cu6} heterometallic complexes. Angew. Chem. Int. Ed. 2013, 52, 1949−1952.  doi: 10.1002/anie.201208781

    15. [15]

      Dutta, S.; Bhunia, P.; Mayans, J.; Drewc, M. G. B.; Ghosh, A. Roles of basicity and steric crowding of anionic coligands in catechol oxidase-like activity of Cu(II)–Mn(II) complexes. Dalton Trans. 2020, 49, 5730−5735.  doi: 10.1039/D0DT00976H

    16. [16]

      Grancha, T.; Mon, M.; Lloret, F.; Ferrando-Soria, J.; Journaux, Y.; Pasán, J.; Pardo, E. Double interpenetration in a chiral three-dimensional magnet with a (10, 3)‑a structure. Inorg. Chem. 2015, 54, 8890−8892.  doi: 10.1021/acs.inorgchem.5b01738

    17. [17]

      Liu, K.; Shi, W.; Cheng, P. Toward heterometallic single-molecule magnets: synthetic strategy, structures and properties of 3d-4f discrete complexes. Coord Chem Rev. 2015, 74−122.

    18. [18]

      Meng, W.; Deng, Y. M.; Xu, F. Facile and environmentally friendly one-step synthesis of hexanuclear Cu(II)-Ni(II) and Cu(II)-Co(II) clusters and their binding interactions with bovine serum albumin. J. Solid State Chem. 2021, 295, 121904−121912.  doi: 10.1016/j.jssc.2020.121904

    19. [19]

      Meng, W.; Xu, F.; Xu, W. J. An anionic heptacopper(II) oxo-cluster {Cu7II} with an S = 7/2 ground state. Inorg. Chem. 2016, 55, 540−542.  doi: 10.1021/acs.inorgchem.5b02206

    20. [20]

      Gao, Q.; Wang, X. Q.; Tapp, J.; Moeller, A.; Jacobson, A. J. Antimony tartrate transition-metal-oxo chiral clusters. Inorg. Chem. 2013, 52, 6610−6616.  doi: 10.1021/ic4006345

    21. [21]

      Gao, Q.; Wang, X. Q.; Jacobson, A. J. A homochiral diamond framework constructed from Fe(III) and Mn(II) oxo-clusters supported by Sb(III) tartrate scaffolds. Chem. Commun. 2012, 48, 3990−3992.  doi: 10.1039/c2cc18174f

    22. [22]

      Gao, Q.; Wang, X. Q.; Conato, M. T.; Makarenko, T.; Jacobson, A. J. Microporous, homochiral structures containing iron oxo-clusters supported by antimony(III) tartrate scaffolds. Cryst. Growth Des. 2011, 11, 4632−4638.  doi: 10.1021/cg200899w

    23. [23]

      Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Solution. University of Göttingen, Germany 1997.

    24. [24]

      Henkelis, J. J.; Jones, L. F.; Miranda, M. P.; Kilner, C. A.; Halcrow, M. A. Two heptacopper(II) disk complexes with a [Cu7(μ3-OH)4(μ-OR)2]8+ core. Inorg. Chem. 2010, 49, 11127−11132.  doi: 10.1021/ic1020093

    25. [25]

      Evans, H. T. Jr. The crystal structures of ammonium and potassium molybdotellurates. J. Am. Chem. Soc. 1948, 70, 1291−1292.  doi: 10.1021/ja01183a521

    26. [26]

      Ugandhar, U.; Navaneetha, T.; Ali, J.; Mondal, S.; Vaitheeswaran, G.; Baskar, V. Assembling homometallic Sb6 and heterometallic Ti4Sb2 oxo clusters. Inorg. Chem. 2020, 59, 6689−6696.  doi: 10.1021/acs.inorgchem.9b03238

    27. [27]

      Fan, L. M.; Gao, L. L.; Wang, X. Q.; Wang, J.; Zhao, L.; Fang, K. G.; Hua, T. P. Structural diversity and magnetic properties of four Cu(II)/Co(II) coordination complexes based on 3, 5-bis(2-carboxylphenoxy)benzoic acid. Polyhedron 2018, 141, 133−139.

    28. [28]

      Li, C. H.; Kuang, Y. F.; Li, W.; Li, Y. L. Hydrothermal synthesis, crystal structure and properties of a new binuclear cage-like yttrium(III) complex Y2(TMBA)6(phen)2. Chin. J. Struct. Chem. 2020, 39, 2016−2020.

    29. [29]

      Chilton, N. F.; Anderson, R. P.; Turner, L. D.; Soncini, A.; Murray, K. S. PHI: a powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes. J. Comput. Chem. 2013, 34, 1164−1175.

  • 加载中
    1. [1]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    4. [4]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    5. [5]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    6. [6]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    7. [7]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    8. [8]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    9. [9]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    10. [10]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    11. [11]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    12. [12]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    13. [13]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    19. [19]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    20. [20]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

Metrics
  • PDF Downloads(1)
  • Abstract views(164)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return