Citation: Jian-Dong-Yong LIU, Xu YU, Jing-Ze BAO, Ying-Xi LIN. A Polyanionic, Quasi-zero-strain and Open-framework K0.76V0.55Nb0.45OPO4 for Sodium-ion Batteries[J]. Chinese Journal of Structural Chemistry, ;2021, 40(12): 1631-1638. doi: 10.14102/j.cnki.0254-5861.2011-3221 shu

A Polyanionic, Quasi-zero-strain and Open-framework K0.76V0.55Nb0.45OPO4 for Sodium-ion Batteries

  • Corresponding author: Ying-Xi LIN, linyingxi90@foxmail.com
  • * These authors have contributed equally
  • Received Date: 15 April 2021
    Accepted Date: 31 May 2021

    Fund Project: the National Natural Science Foundation of China 21771180

Figures(5)

  • A carbon-coated K0.76V0.55Nb0.45OPO4 (KVNP@C) polyanion material was successfully synthesized by a simple sol-gel method. The KVNP@C possesses a highly stable inorganic open-framework structure, which is hard to be affected by the Na+ intercalation/deintercalation when used as an anode material for sodium-ion batteries (NIBs). The assembled KVNP@C/Na half-cell shows a capacity retention of 81.2% and an average Coulombic efficiency of 99.8% at a current density of 300 mA/g after 1500 cycles. In-situ XRD analysis reveals a single-phase solid solution reaction mechanism with a lattice expansion of 4.76%. This work sheds insights into the quest for developing novel polyanion-based anode materials for sodium-ion batteries.
  • 加载中
    1. [1]

      Muñoz-Márquez, M. Á.; Saurel, D.; Gómez-Cámer, J. L.; Casas-Cabanas, M.; Castillo-Martínez, E.; Rojo, T. Na-ion batteries for large scale applications: a review on anode materials and solid electrolyte interphase formation. Adv. Energy Mater. 2017, 7, 1700463.  doi: 10.1002/aenm.201700463

    2. [2]

      Kim, J.; Choi, M. S.; Shin, K. H.; Kota, M.; Kang, Y.; Lee, S.; Lee, J. Y.; Park, H. S. Rational design of carbon nanomaterials for electrochemical sodium storage and capture. Adv. Mater. 2019, 31, 1803444.  doi: 10.1002/adma.201803444

    3. [3]

      Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X.; Ceder, G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 2011, 4, 3680–3688.  doi: 10.1039/c1ee01782a

    4. [4]

      Sun, Y.; Guo, S.; Zhou, H. Exploration of advanced electrode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 2018, 9, 1800212.

    5. [5]

      Cao, Y.; Xiao, L.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L. V.; Yang, Z.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787.  doi: 10.1021/nl3016957

    6. [6]

      Wang, G. Z.; Feng, J. M.; Dong, L.; Li, X. F.; Li, D. J. Porous graphene anchored with Sb/sbox as sodium-ion battery anode with enhanced reversible capacity and cycle performance. J. Alloys Compd. 2017, 693, 141–149.  doi: 10.1016/j.jallcom.2016.09.150

    7. [7]

      Tamaru, M.; Chung, S. C.; Shimizu, D.; Nishimura, S. I.; Yamada, A. Pyrophosphate chemistry toward safe rechargeable batteries. Chem. Mater. 2013, 25, 2538–2543.  doi: 10.1021/cm4010739

    8. [8]

      Ellis, B. L.; Lee, K. T.; Nazar, L. F. Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 2010, 22, 691–714.  doi: 10.1021/cm902696j

    9. [9]

      Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.  doi: 10.1039/c2ee02781j

    10. [10]

      Zhu, C.; Song, K.; van Aken, P. A.; Maier, J.; Yu, Y. Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett. 2014, 14, 2175–2180.  doi: 10.1021/nl500548a

    11. [11]

      Bierlein, J. D.; Vanherzeele, H. Potassium titanyl phosphate-properties and new applications. J. Opt. Soc. AM. B 1989, 6, 622–633.  doi: 10.1364/JOSAB.6.000622

    12. [12]

      Rangan, K. K.; Verbaere, A.; Gopalakrishnan, J. Structure of KNb0.5V0.5OPO4, a KTiOPO4 analog. Mater. Res. Bull. 1998, 33, 395–399.  doi: 10.1016/S0025-5408(97)00252-3

    13. [13]

      Bommier, C.; Ji, X. Electrolytes, sei formation, and binders: a review of nonelectrode factors for sodium-ion battery anodes. Small. 2018, 14, 1703576.  doi: 10.1002/smll.201703576

    14. [14]

      Kim, J.; Seo, D. H.; Kim, H.; Park, I.; Yoo, J. K.; Jung, S. K.; Park, Y. U.; Goddard Iii, W. A.; Kang, K. Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries. Energy Environ. Sci. 2015, 8, 540–545.  doi: 10.1039/C4EE03215B

    15. [15]

      Liu, Y.; Xu, Y.; Han, X.; Pellegrinelli, C.; Zhu, Y.; Zhu, H.; Wan, J.; Chung, A. C.; Vaaland, O.; Wang, C.; Hu, L. Porous amorphous FePO4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes. Nano Lett. 2012, 12, 5664–5668.  doi: 10.1021/nl302819f

    16. [16]

      Sun, Q.; Ren, Q. Q.; Fu, Z. W. Nasicon-type Fe2(MoO4)3 thin film as cathode for rechargeable sodium ion battery. Electrochem. Commun. 2012, 23, 145–148.  doi: 10.1016/j.elecom.2012.07.023

    17. [17]

      Tripathi, R.; Wood, S. M.; Islam, M. S.; Nazar, L. F. Na-ion mobility in layered Na2FePO4F and olivine Na[Fe, Mn]PO4. Energy Environ. Sci. 2013, 6, 2257–2264.  doi: 10.1039/c3ee40914g

    18. [18]

      Chen, C. Y.; Matsumoto, K.; Nohira, T.; Hagiwara, R. Na2MnSiO4 as a positive electrode material for sodium secondary batteries using an ionic liquid electrolyte. Electrochem. Commun. 2014, 45, 63–66.  doi: 10.1016/j.elecom.2014.05.017

    19. [19]

      Kim, H.; Shakoor, R. A.; Park, C.; Lim, S. Y.; Kim, J. S.; Jo, Y. N.; Cho, W.; Miyasaka, K.; Kahraman, R.; Jung, Y.; Choi, J. W. Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study. Adv. Funct. Mater. 2013, 23, 1147–1155.  doi: 10.1002/adfm.201201589

    20. [20]

      Fang, Y.; Liu, Q.; Xiao, L.; Ai, X.; Yang, H.; Cao, Y. High-performance olivine NaFePO4 microsphere cathode synthesized by aqueous electrochemical displacement method for sodium ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 17977–17984.  doi: 10.1021/acsami.5b04691

    21. [21]

      Yang, J.; Wang, H.; Hu, P.; Qi, J.; Guo, L.; Wang, L. A high-rate and ultralong-life sodium-ion battery based on NaTi2(PO4)3 nanocubes with synergistic coating of carbon and rutile TiO2. Small. 2015, 11, 3744–3749.  doi: 10.1002/smll.201500144

    22. [22]

      Patoux, S.; Rousse, G.; Leriche, J. B.; Masquelier, C. Structural and electrochemical studies of rhombohedral Na2TiM(PO4)3 and Li1.6Na0.4TiM(PO4)3 (M: Fe, Cr) phosphates. Chem. Mater. 2003, 15, 2084–2093.  doi: 10.1021/cm020479p

    23. [23]

      Chen, N.; Gao, Y.; Zhang, M.; Meng, X.; Wang, C.; Wei, Y.; Du, F.; Chen, G. Electrochemical properties and sodium-storage mechanism of Ag2Mo2O7 as the anode material for sodium-ion batteries. Chem-Eur. J. 2016, 22, 7248–7254.  doi: 10.1002/chem.201600224

    24. [24]

      Gnanavel, M.; Raveau, B.; Pralong, V. Electrochemical Li/Na intercalation in TiOSO4, first member of the phosphate tungsten bronze-type family. J. Electrochem. Soc. 2015, 162, A465–A469.  doi: 10.1149/2.0831503jes

    25. [25]

      Senguttuvan, P.; Rousse, G.; Vezin, H.; Tarascon, J. M.; Palacín, M. R. Titanium(Ⅲ) sulfate as new negative electrode for sodium-ion batteries. Chem. Mater. 2013, 25, 2391–2393.  doi: 10.1021/cm401181b

    26. [26]

      Mu, L.; Ben, L.; Hu, Y. S.; Li, H.; Chen, L.; Huang, X. Novel 1.5 V anode materials, ATiOPO4 (A = NH4, K, Na), for room-temperature sodium-ion batteries. J. Mater. Chem. A 2016, 4, 7141–7147.  doi: 10.1039/C6TA00891G

    27. [27]

      Chen, C.; Wen, Y.; Hu, X.; Ji, X.; Yan, M.; Mai, L.; Hu, P.; Shan, B.; Huang, Y. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 1–8.

    28. [28]

      Zhao, G.; Zhang, Y.; Yang, L.; Jiang, Y.; Zhang, Y.; Hong, W.; Tian, Y.; Zhao, H.; Hu, J.; Zhou, L.; Hou, H.; Ji, X.; Mai, L. Nickel chelate derived NiS2 decorated with bifunctional carbon: an efficient strategy to promote sodium storage performance. Adv. Funct. Mater. 2018, 28, 1803690.  doi: 10.1002/adfm.201803690

    29. [29]

      Zou, G.; Hou, H.; Foster, C. W.; Banks, C. E.; Guo, T.; Jiang, Y.; Zhang, Y.; Ji, X. Advanced hierarchical vesicular carbon co-doped with S, P, N for high-rate sodium storage. Adv. Sci. 2018, 5, 1800241.  doi: 10.1002/advs.201800241

    30. [30]

      Lindström, H.; Södergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S. E. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 1997, 101, 7717–7722.  doi: 10.1021/jp970490q

    31. [31]

      Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruna, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.  doi: 10.1038/nmat3601

    32. [32]

      Xiao, Y.; Wang, P. F.; Yin, Y. X.; Zhu, Y. F.; Niu, Y. B.; Zhang, X. D.; Zhang, J.; Yu, X.; Guo, X. D.; Zhong, B. H.; Guo, Y. G. Exposing active facets by multiple-layer oriented stacking nanosheets for high-performance capacitive sodium-ion oxide cathode. Adv. Mater. 2018, 30, 1803765.  doi: 10.1002/adma.201803765

    33. [33]

      Gu, M.; Kushima, A.; Shao, Y.; Zhang, J. G.; Liu, J.; Browning, N. D.; Li, J.; Wang, C. Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries. Nano Lett. 2013, 13, 5203–5211.  doi: 10.1021/nl402633n

    34. [34]

      Liu, Y.; Zhang, N.; Jiao, L.; Chen, J. Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv. Mater. 2015, 27, 6702–6707.  doi: 10.1002/adma.201503015

    35. [35]

      Liu, J.; Kopold, P.; Wu, C.; van Aken, P. A.; Maier, J.; Yu, Y. Uniform yolk-shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 3531–3538.  doi: 10.1039/C5EE02074C

    36. [36]

      Liang, L.; Xu, Y.; Wang, C.; Wen, L.; Fang, Y.; Mi, Y.; Zhou, M.; Zhao, H.; Lei, Y. Large-scale highly ordered sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 2954–2962.  doi: 10.1039/C5EE00878F

    37. [37]

      Zhang, N.; Han, X.; Liu, Y.; Hu, X.; Zhao, Q.; Chen, J. 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries. Adv. Energy Mater. 2015, 5, 1401123.  doi: 10.1002/aenm.201401123

    38. [38]

      Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H.; Zheng, G.; Sun, Y.; Li, Y.; Cui, Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985.  doi: 10.1038/nnano.2015.194

  • 加载中
    1. [1]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    2. [2]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    3. [3]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    4. [4]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    5. [5]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    6. [6]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    7. [7]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    8. [8]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    9. [9]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    10. [10]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    11. [11]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    12. [12]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    13. [13]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    14. [14]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    15. [15]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    16. [16]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    17. [17]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    18. [18]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    19. [19]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    20. [20]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

Metrics
  • PDF Downloads(1)
  • Abstract views(190)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return