Citation: Hai-Bo CHANG, Jun-Bo LIU, Zheng DONG, Dan-Dan WANG, Yu XIN, Zhuo-Lin JIANG, Shan-Shan TANG. Enhancement of Photocatalytic Degradation of Polyvinyl Chloride Plastic with Fe2O3 Modified AgNbO3 Photocatalyst under Visible-light Irradiation[J]. Chinese Journal of Structural Chemistry, ;2021, 40(12): 1595-1603. doi: 10.14102/j.cnki.0254-5861.2011-3217 shu

Enhancement of Photocatalytic Degradation of Polyvinyl Chloride Plastic with Fe2O3 Modified AgNbO3 Photocatalyst under Visible-light Irradiation

  • Corresponding author: Jun-Bo LIU, liujb@mail.ccut.edu.cn
  • Received Date: 14 April 2021
    Accepted Date: 12 July 2021

    Fund Project: Science and Technology Department of Jilin Province 20200101018JCScience and Technology Department of Jilin Province 20190303086SFScience and Technology Department of Jilin Province 20200201011JC

Figures(9)

  • The solid-phase photocatalytic degradation of polyvinyl chloride (PVC) plastic with AgNbO3/Fe2O3 is studied under visible-light irradiation. The PVC-(AgNbO3/Fe2O3) samples are characterized by X-ray photoelectron spectroscope (XPS), scanning electron microscope (SEM), gas chromatography (GC), and UV-vis diffusion reflectance spectra (UV-vis DRS). The photocatalytic properties of PVC-(AgNbO3/Fe2O3) samples are systematically investigated. More amounts of generated CO2, greater texture change and higher weight loss rate were exhibited in the system of PVC-(AgNbO3/Fe2O3) than pure PVC film. The weight loss rate is ten times higher than that of pure PVC film, which reaches to 46.53% with optimum amount of 0.5 wt% Fe2O3. Active radicals generate primarily on the surface of Fe2O3 particles, which cause composite plastic decomposition on the PVC-(AgNbO3/Fe2O3) interface and extend into polymer interor. The study provides a new promising way to degrade the plastic waste under visible-light.
  • 加载中
    1. [1]

      Allahbakhsh, A. PVC/rice straw/SDBS-modified graphene oxide sustainable nanocomposites: melt mixing process and electrical insulation characteristics. Compos. Part. A. Appl. Sci. Manuf. 2020, 134, 105902−1059010.  doi: 10.1016/j.compositesa.2020.105902

    2. [2]

      Harper, B. J.; Clendaniel, A.; Sinche, F.; Way, D.; Hughes, M. Impacts of chemical modification on the toxicity of diverse nanocellulose materials to developing zebrafish. Cellulose 2016, 23, 1763−1775.  doi: 10.1007/s10570-016-0947-5

    3. [3]

      Zhou, G. Y.; Zhao, X. D.; Dong, B. B.; Liu, C. T. Improvement of the dispersity of micronano particles for PP/PVC composites using gas-assisted dispersion in a controlled foaming process. Polym. Eng. Sci. 2020, 60, 524−534.  doi: 10.1002/pen.25308

    4. [4]

      Wang, M. G.; Han, J.; Hu, Y. M.; Guo, R.; Yin, Y. D. Carbon-incorporated NiO/TiO2 mesoporous shells with p-n heterojunctions for efficient visible light photocatalysis. ACS. Appl. Mater. Interfaces 2016, 8, 29511−29521.  doi: 10.1021/acsami.6b10480

    5. [5]

      Teramura, K.; Tsunehiro, A.; Funabiki, T. Photoassisted selective catalytic reduction of NO with ammonia in the presence of oxygen over TiO2. Langmuir. 2017, 19, 1209−1214.

    6. [6]

      Abd El-Lateef, Hany M.; Mohamed, I. M. A.; Zhu, J. H.; Khalaf, M. M. An efficient synthesis of electrospun TiO2-nanofibers/Schiff base phenylalanine composite and its inhibition behavior for C-steel corrosion in acidic chloride environments. J. Taiwan. Inst. Chem. E 2020, 112, 306−321.  doi: 10.1016/j.jtice.2020.06.002

    7. [7]

      Wei, S. Y.; Chen, Y. B.; Hu, X. Y.; Wang, C. H.; Huang, X. J.; Liu, D. Q.; Zhang, Y. F. Monovalent/divalent salts separation via thin film nanocomposite nanofiltration membrane containing aminated TiO2 nanoparticles. J. Taiwan Inst. Chem. E. 2020, 112, 169−179.  doi: 10.1016/j.jtice.2020.06.014

    8. [8]

      Yang, L. F.; Liu, J. B.; Chang, H. B.; Tang, S. S. Enhancing the visible-light-induced photocatalytic activity of AgNbO3 by loading Ag@AgCl nanoparticles. RSC. Adv. 2015, 5, 59970−59975.  doi: 10.1039/C5RA06803G

    9. [9]

      Gao, J.; Liu, Q.; Dong, J. F.; Wang, X. P.; Li, J. F. Local structure heterogeneity in Sm-doped AgNbO3 for improved energy-storage performance. ACS. Appl. Mater. Interfaces 2020, 12, 6097−6107.  doi: 10.1021/acsami.9b20803

    10. [10]

      Li, G.; Yan, S.; Wang, Z.; Wang, X.; Li, Z.; Zou, Z. Synthesis and visible light photocatalytic property of polyhedron-shaped AgNbO3. Dalton. T. 2009, 13, 2423−2427.

    11. [11]

      Li, G. Q.; Bai, Y.; Liu, X. Y.; Zhang, W. F. Surface photoelectric properties of AgNbO3 photo-catalyst. J. Phys. D. 2009, 42, 1−4.

    12. [12]

      Yang, L.; Shen, Q. Y.; Yu, Q. N.; Zhang, F.; Li, G. Q.; Zhang, W. F. Photoinduced in-situ growth of Ag nanoparticles on AgNbO3. J. Phys. Chem. C 2016, 120, 28712−28716.  doi: 10.1021/acs.jpcc.6b10961

    13. [13]

      Shu, H.; Xie, J.; Xu, H. Structural characterization and photocatalytic activity of NiO/AgNbO3. J. Alloys. Compounds 2010, 496, 633−637.  doi: 10.1016/j.jallcom.2010.02.148

    14. [14]

      Lv, X. X.; Deng, J. J.; Sun, X. H. Cumulative effect of Fe2O3 on TiO2 nanotubes via atomic layer deposition with enhanced lithium ion storage performance. Appl. Surf. Sci. 2016, 369, 314−319.  doi: 10.1016/j.apsusc.2016.02.075

    15. [15]

      Pang, Y. L.; Lim, S.; Tong, H. C.; Chong, W. T. Synthesis, characteristics and sonocatalytic activities of calcined γ-Fe2O3 and TiO2 nanotubes/γ-Fe2O3 magnetic catalysts in the degradation of Orange G. Ultrason Sonochem. 2016, 29, 317−327.  doi: 10.1016/j.ultsonch.2015.10.003

    16. [16]

      Lin, Y. F.; Chang, C. Y. Design of composite maghemite/hematite/carbon aerogel nanostructures with high oerformance for organic dye removal. Sep. Purif. Technol. 2015, 149, 74−81.  doi: 10.1016/j.seppur.2015.05.025

    17. [17]

      Wang, C.; Yan, J.; Wu, X. Y.; Song, Y. H.; Cai, G. B. Synthesis and characterization of AgBr/AgNbO3 composite with enhanced visible-light photocatalytic activity. Appl. Surf. Sci. 2013, 273, 159−166.  doi: 10.1016/j.apsusc.2013.02.004

    18. [18]

      Kato, H.; Kobayashi, H.; Kudo, A. Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M: Ta and Nb) with the perovskite structure. J. Phys. Chem. C 2002, 106, 12441−12447.  doi: 10.1021/jp025974n

    19. [19]

      Yashima, M.; Matsuyama, S.; Sano, R.; Itoh, M.; Tsuda, K.; Fu, D. S. Structure of ferroelectric silver niobate AgNbO3. Chem. Mater. 2011, 23, 1643−1645.  doi: 10.1021/cm103389q

    20. [20]

      Chang, H. B.; Shang, M. Y.; Zhang, C. Y.; Yuan, H. M.; Feng, S. H. Hydrothermal syntheses and structural phase transitions of AgNbO3. J. Am. Ceram. Soc. 2012, 95, 3673−3677.  doi: 10.1111/j.1551-2916.2012.05392.x

    21. [21]

      Wang, D. D.; Liu, L. B.; Chang, H. B.; Tang, S. S. AgNbO3/PVC film with highly photocatalytic activity under visible light. Chem. J. Chin. U. 2014, 9, 1975−1981.

    22. [22]

      Muduli, R.; Pattanayak, R.; Raut, S. Dielectric ferroelectric and Impedance spectroscopic studies in TiO2-doped AgNbO3 ceramic. J. Alloys. Compounds 2016, 664, 715−725.  doi: 10.1016/j.jallcom.2015.12.259

    23. [23]

      Wu, F. J.; Li, X.; Liu, W.; Zhang, S. T. Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions. Appl. Surf. Sci. 2017, 405, 60−70.  doi: 10.1016/j.apsusc.2017.01.285

    24. [24]

      Souza, F. L.; Lopes, K. P.; Nascente, P. A.; Leite, E. R. Nanostructured hematite thin films produced by spin-coating deposition solution: application in water splitting. Sol. Energ. Mat. Sol. C 2001, 93, 362−368.

    25. [25]

      Lin, H. X.; Xu, Z. T.; Wang, X. X.; Long, J. J.; Su, W. Y.; Fu, X. Z.; Lin, Q. Photocatalytic and antibacterial properties of medical-grade PVC material coated with TiO2 film. J. Biomed. Mater. Res. A 2008, 87, 425−431.

    26. [26]

      Cadiam, M. B.; Rajangam, V.; Balachandran, S.; Aziz, A.; Hyun, T. J. Characterization of reduced graphene oxide supported mesoporous Fe2O3/TiO2 nano-particles and adsorption of As(Ⅲ) and As(Ⅴ) from potable water. J. Taiwan. Inst. Chem. E 2016, 62, 199−208.  doi: 10.1016/j.jtice.2016.02.005

    27. [27]

      Hua, A.; Pan, D. H.; Yong, L.; Luan, J.; Wang, Y.; He, J. Fe3Si-core/amorphous-C-shell nanocapsules with enhanced microwave absorption. J. Magn. Magn. Mater. 2019, 471, 561−567.  doi: 10.1016/j.jmmm.2018.09.095

    28. [28]

      Zhang, C.; Wu, Q.; Ke, X. Elaboration and characterization of nanoplate structured α-Fe2O3 films by Ag3PO4. Sol. Energy 2016, 135, 274−283.  doi: 10.1016/j.solener.2016.06.007

    29. [29]

      Han, H.; Riboni, F.; Karlicky, F. α-Fe2O3/TiO2 3D hierarchical nanostructures for enhanced photoelectrochemical water splitting. Nanoscale 2016, 9, 134−142.

    30. [30]

      Liu, G. L.; Zhu, D. W.; Liao, S. J.; Ren, L. Y.; Cui, J. Z.; Zhou, W. B. Solid-phase photocatalytic degradation of polyethylene-goethite composite film under UV-light irradiation. J. Hazard. Mater. 2009, 172, 1424−1429.  doi: 10.1016/j.jhazmat.2009.08.008

    31. [31]

      Deng, W. H.; Ning, S. B.; Lin, Q. Y.; Zhang, H. L.; Zhou, T. H. I-TiO2/PVC film with highly photocatalytic antibacterial activity under visible light. Colloids. Surf. B 2016, 144, 196−202.  doi: 10.1016/j.colsurfb.2016.03.085

    32. [32]

      Yan, X.; Xue, C.; Yang, B.; Yang, G. Novel three-dimensionally ordered macroporous Fe3+-doped TiO2 photocatalysts for H2 production and degradation applications. Appl. Surf. Sci. 2017, 394, 248−257.  doi: 10.1016/j.apsusc.2016.10.077

    33. [33]

      Ng, T. W.; Zhang, L. S.; Liu, J. S.; Huang, G. C.; Wang, W.; Wong, P. K. Visible-light-driven photocatalytic inactivation of Escherichia coli by magnetic Fe2O3-AgBr. Water. Res. 2016, 90, 111−118.  doi: 10.1016/j.watres.2015.12.022

    34. [34]

      Kim, S. H.; Kwak, S. Y.; Suzuki, T. Photocatalytic degradation of flexible PVC-TiO2 nanohybrid as an eco-friendly alternative to the current waste landfill and dioxine-emitting incineration of post-use PVC. Polymer. 2006, 47, 3005−3116.  doi: 10.1016/j.polymer.2006.03.015

    35. [35]

      Cho, S. M.; Choi, W. Y. Solid-phase photocatalytic degradation of PVC-TiO2 polymer composites. J. Photoch. Photobio. A 2001, 143, 221−228.  doi: 10.1016/S1010-6030(01)00499-3

    36. [36]

      Xie, J.; Zhou, Z.; Lian, Y.; Hao, Y.; Li, P.; Wei, Y. Synthesis of α-Fe2O3/ZnO composites for photocatalytic degradation of pentachlorophenol under UV-vis light irradiation. Ceram. Int. 2015, 41, 2622−2625.  doi: 10.1016/j.ceramint.2014.10.043

    37. [37]

      Moumeni, O.; Hamdaoui, O. Intensification of sonochemical degradation of malachitegreen by bromide ions. Ultrason. Sonochem. 2012, 19, 404−409.  doi: 10.1016/j.ultsonch.2011.08.008

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    3. [3]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    4. [4]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    5. [5]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    6. [6]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    7. [7]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    8. [8]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    9. [9]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    10. [10]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    11. [11]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    12. [12]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    13. [13]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    14. [14]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    15. [15]

      Yun-Fei ZhangChun-Hui ZhangJian-Hui XuLei LiDan LiJin-Hong FanJiale GaoXin QuanQi WuYue ZouYan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385

    16. [16]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    17. [17]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    18. [18]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    19. [19]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    20. [20]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

Metrics
  • PDF Downloads(2)
  • Abstract views(362)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return