Citation: Xiang-Cong WANG, Mao-Cheng YANG, Mo-Xuan ZHANG, Yin-Jie HU, Zhong-Hua WANG, Fan-Hong WU. 3D-QSAR, Molecular Docking and Molecular Dynamics Simulations of 3-Phenylsulfonylaminopyridine Derivatives as Novel PI3Kα Inhibitors[J]. Chinese Journal of Structural Chemistry, ;2021, 40(12): 1567-1585. doi: 10.14102/j.cnki.0254-5861.2011-3216 shu

3D-QSAR, Molecular Docking and Molecular Dynamics Simulations of 3-Phenylsulfonylaminopyridine Derivatives as Novel PI3Kα Inhibitors

  • Corresponding author: Zhong-Hua WANG, wzhsit@163.com Fan-Hong WU, wfh@sit.edu.cn
  • Received Date: 13 April 2021
    Accepted Date: 2 June 2021

Figures(10)

  • The p110α, catalytic subunit of PI3Kα, was the primary phosphoinositide 3-kinases (PI3Ks) isoform involved in oncogenic RTK signaling and tumorigenesis. In this study, the three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics simulation were employed to study the binding mode between 3-phenylsulfonylaminopyridine derivatives and PI3Kα. The stable and reliable 3D-QSAR models were constructed based on the application of the comparative molecular field analysis (CoMFA) model (q2 = 0.704, r2 = 0.994) and comparative molecular similarity index analysis (CoMSIA) model (q2 = 0.804, r2 = 0.996). The contour maps illustrated relationship between structure and biological activity. The conformation obtained after MD simulation was more stable than the docked conformation. MD simulation was performed in a more realistic environment, and was much closer to physiological conditions. As a result, five novel PI3Kα inhibitors were designed with better biological activity than the template compound 8.
  • 加载中
    1. [1]

      Fry, M. J. Structure, regulation and function of phosphoinositide 3-kinases. Biochim. Biophys. Acta 1994, 1226, 237−268.  doi: 10.1016/0925-4439(94)90036-1

    2. [2]

      Soler, A.; Angulo-Urarte, A.; Graupera, M. PI3K at the crossroads of tumor angiogenesis signaling pathways. Mol. Cell Oncol. 2015, 2, e975624−10.  doi: 10.4161/23723556.2014.975624

    3. [3]

      Bader, A. G.; Kang, S.; Zhao, L.; Vogt, P. K. Oncogenic PI3K deregulates transcription and translation. Nat. Rev. Cancer 2005, 5, 921−929.  doi: 10.1038/nrc1753

    4. [4]

      Engelman, J. A.; Luo, J.; Cantley, L. C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006, 7, 606−619.

    5. [5]

      Rewcastle, G. W.; Gamage, S. A.; Flanagan, J. U.; Kendall, J. D.; Denny, W. A.; Baguley, B. C.; Buchanan, C. M.; Chao, M.; Kestell, P.; Kolekar, S.; Lee, W. J.; Lill, C. L.; Malik, A.; Singh, R.; Jamieson, S. M.; Shepherd, P. R. Synthesis and biological evaluation of novel phosphatidylinositol 3-kinase inhibitors: solubilized 4-substituted benzimidazole analogs of 2-(difluoromethyl)-1-[4, 6-di(4-morpholinyl)-1, 3, 5-triazin-2-yl]-1H-benzimidazole (ZSTK474). Eur. J. Med. Chem. 2013, 64, 137−147.  doi: 10.1016/j.ejmech.2013.03.038

    6. [6]

      Vanhaesebroeck, B.; Guillermet-Guibert, J.; Graupera, M.; Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol. 2010, 11, 329−341.

    7. [7]

      Paddock, M. N.; Field, S. J.; Cantley, L. C. Treating cancer with phosphatidylinositol-3-kinase inhibitors: increasing efficacy and overcoming resistance. J. Lipid Res. 2019, 60, 747−752.  doi: 10.1194/jlr.S092130

    8. [8]

      Thorpe, L. M.; Yuzugullu, H.; Zhao, J. J. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat. Rev. Cancer 2015, 15, 7−24.  doi: 10.1038/nrc3860

    9. [9]

      Swat, W.; Montgrain, V.; Doggett, T. A.; Douangpanya, J.; Puri, K.; Vermi, W.; Diacovo, T. G. Essential role of PI3Kdelta and PI3Kgamma in thymocyte survival. Blood 2006, 107, 2415−2422.  doi: 10.1182/blood-2005-08-3300

    10. [10]

      Yuan, T. L.; Cantley, L. C. PI3K pathway alterations in cancer: variations on a theme. Oncogen. 2008, 27, 5497−5510.  doi: 10.1038/onc.2008.245

    11. [11]

      Rewcastle, G. W.; Gamage, S. A.; Flanagan, J. U.; Frederick, R.; Denny, W. A.; Baguley, B. C.; Kestell, P.; Singh, R.; Kendall, J. D.; Marshall, E. S.; Lill, C. L.; Lee, W. J.; Kolekar, S.; Buchanan, C. M.; Jamieson, S. M.; Shepherd, P. R. Synthesis and biological evaluation of novel analogues of the pan class Ⅰ phosphatidylinositol 3-kinase (PI3K) inhibitor 2-(difluoromethyl)-1-[4, 6-di(4-morpholinyl)-1, 3, 5-triazin-2-yl]-1H-benzimidazole (ZSTK474). J. Med. Chem. 2011, 54, 7105−7126.  doi: 10.1021/jm200688y

    12. [12]

      Falasca, M.; Hughes, W. E.; Dominguez, V.; Sala, G.; Fostira, F.; Fang, M. Q.; Cazzolli, R.; Shepherd, P. R.; James, D. E.; Maffucci, T. The role of phosphoinositide 3-kinase C2alpha in insulin signaling. J. Biol. Chem. 2007, 282, 28226−28236.  doi: 10.1074/jbc.M704357200

    13. [13]

      Liu, X.; Xu, Y.; Zhou, Q.; Chen, M.; Zhang, Y.; Liang, H.; Zhao, J.; Zhong, W.; Wang, M. PI3K in cancer: its structure, activation modes and role in shaping tumor microenvironment. Future Oncology 2018, 14, 665−674.  doi: 10.2217/fon-2017-0588

    14. [14]

      Singh, P.; Dar, M. S.; Dar, M. J. p110alpha and p110beta isoforms of PI3K signaling: are they two sides of the same coin? FEBS Lett. 2016, 590, 3071−3082.  doi: 10.1002/1873-3468.12377

    15. [15]

      Zhu, J.; Jia, L.; Jiang, Y.; Yu, Q.; Xu, L.; Cai, Y.; Chen, Y.; Li, H.; Gang, H.; Liang, W.; Jin, J. Integrated molecular modeling techniques to reveal selective mechanisms of inhibitors to PI3Kδ with marketed Idelalisib. Chem. Biol. Drug Des. 2021, 97, 1158−1169.  doi: 10.1111/cbdd.13838

    16. [16]

      Scott, W. J.; Hentemann, M. F.; Rowley, R. B.; Bull, C. O.; Jenkins, S.; Bullion, A. M.; Johnson, J.; Redman, A.; Robbins, A. H.; Esler, W.; Fracasso, R. P.; Garrison, T.; Hamilton, M.; Michels, M.; Wood, J. E.; Wilkie, D. P.; Xiao, H.; Levy, J.; Stasik, E.; Liu, N.; Schaefer, M.; Brands, M.; Lefranc, J. Discovery and SAR of novel 2, 3-dihydroimidazo[1, 2-c]quinazoline PI3K inhibitors: identification of copanlisib (BAY 80-6946). ChemMedChem. 2016, 11, 1517−1530.  doi: 10.1002/cmdc.201600148

    17. [17]

      Garces, A. E.; Stocks, M. J. ClassⅠPI3K clinical candidates and recent inhibitor design strategies: a medicinal chemistry perspective. J. Med. Chem. 2019, 62, 4815−4850.  doi: 10.1021/acs.jmedchem.8b01492

    18. [18]

      Furet, P.; Guagnano, V.; Fairhurst, R. A.; Imbach-Weese, P.; Bruce, I.; Knapp, M.; Fritsch, C.; Blasco, F.; Blanz, J.; Aichholz, R.; Hamon, J.; Fabbro, D.; Caravatti, G. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg. Med. Chem. Lett. 2013, 23, 3741−3748.  doi: 10.1016/j.bmcl.2013.05.007

    19. [19]

      Cramer, R. D.; Patterson, D. E.; Bunce, J. D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988, 110, 5959−5967.  doi: 10.1021/ja00226a005

    20. [20]

      Klebe, G.; Abraham, U.; Mietzner, T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem. 1994, 37, 4130−46.  doi: 10.1021/jm00050a010

    21. [21]

      Han, F.; Lin, S.; Liu, P.; Liu, X.; Tao, J.; Deng, X.; Yi, C.; Xu, H. Discovery of a novel series of thienopyrimidine as highly potent and selective PI3K inhibitors. ACS Med. Chem. Lett. 2015, 6, 434−438.  doi: 10.1021/ml5005014

    22. [22]

      Lin, S.; Jin, J.; Liu, Y.; Tian, H.; Zhang, Y.; Fu, R.; Zhang, J.; Wang, M.; Du, T.; Ji, M.; Wu, D.; Zhang, K.; Sheng, L.; Li, Y.; Chen, X.; Xu, H. Discovery of 4-methylquinazoline based PI3K inhibitors for the potential treatment of idiopathic pulmonary fibrosis. J. Med. Chem. 2019, 62, 8873−8879.  doi: 10.1021/acs.jmedchem.9b00969

    23. [23]

      Lin, S.; Wang, C.; Ji, M.; Wu, D.; Lv, Y.; Sheng, L.; Han, F.; Dong, Y.; Zhang, K.; Yang, Y.; Li, Y.; Chen, X.; Xu, H. Discovery of new thienopyrimidine derivatives as potent and orally efficacious phosphoinositide 3-kinase inhibitors. Bioorg. Med. Chem. 2018, 26, 637−646.  doi: 10.1016/j.bmc.2017.12.025

    24. [24]

      Lin, S.; Han, F.; Liu, P.; Tao, J.; Zhong, X.; Liu, X.; Yi, C.; Xu, H. Identification of novel 7-amino-5-methyl-1, 6-naphthyridin-2(1H)-one derivatives as potent PI3K/mTOR dual inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 790−793.  doi: 10.1016/j.bmcl.2013.12.112

    25. [25]

      Han, F.; Lin, S.; Liu, P.; Tao, J.; Yi, C.; Xu, H. Synthesis and structure-activity relationships of PI3K/mTOR dual inhibitors from a series of 2-amino-4-methylpyrido[2, 3-d]pyrimidine derivatives. Bioorg. Med. Chem. Lett. 2014, 24, 4538−4541.  doi: 10.1016/j.bmcl.2014.07.073

    26. [26]

      Ran, T.; Lu, T.; Yuan, H. L.; Liu, H. C.; Wang, J.; Zhang, W. W.; Leng, Y.; Lin, G. W.; Zhuang, S. L.; Chen, Y. D. A selectivity study on mTOR/PI3K alpha inhibitors by homology modeling and 3D-QSAR. J. Mol. Model. 2012, 18, 171−86.  doi: 10.1007/s00894-011-1034-3

    27. [27]

      Yuan, H. L.; Tai, W. T.; Hu, S. H.; Liu, H. C.; Zhang, Y. M.; Yao, S. H.; Ran, T.; Lu, S.; Ke, Z. P.; Xiong, X.; Xu, J. X.; Chen, Y. D.; Lu, T. Fragment-based strategy for structural optimization in combination with 3D-QSAR. J. Comput. Aided Mol. Des. 2013, 27, 897−15.  doi: 10.1007/s10822-013-9687-x

    28. [28]

      Yuan, H.; Liu, H.; Liu, C. W.; Wang, F.; Zhang, Y.; Yao, S.; Ran, T.; Lu, S.; Ke, Z.; Xiong, X.; Xu, J.; Chen, Y.; Lu, T. Molecular modelling on small molecular CDK2 inhibitors: an integrated approach using a combination of molecular docking, 3D-QSAR and pharmacophore modelling. SAR QSAR Environ. Res. 2013, 24, 795−17.  doi: 10.1080/1062936X.2013.815655

    29. [29]

      Leng, Y.; Lu, T.; Yuan, H. L.; Liu, H. C.; Lu, S.; Zhang, W. W.; Jiang, Y. L.; Chen, Y. D. QSAR studies on imidazopyrazine derivatives as aurora a kinase inhibitors. SAR QSAR Environ. Res. 2012, 23, 705−30.  doi: 10.1080/1062936X.2012.719541

    30. [30]

      Lu, S.; Liu, H. C.; Chen, Y. D.; Yuan, H. L.; Sun, S. L.; Gao, Y. P.; Yang, P.; Zhang, L.; Lu, T. Combined pharmacophore modeling, docking, and 3D-QSAR studies of PLK1 inhibitors. Int. J. Mol. Sci. 2011, 12, 8713−8739.  doi: 10.3390/ijms12128713

    31. [31]

      Zhang, Y. M.; Liu, H. C.; Jiao, Y.; Yuan, H. L.; Wang, F. G.; Lu, S.; Yao, S. H.; Ke, Z. P.; Tai, W. T.; Jiang, Y. L.; Chen, Y. D.; Lu, T. De novo design of N-(pyridin-4-ylmethyl)aniline derivatives as KDR inhibitors: 3D-QSAR, molecular fragment replacement, protein-ligand interaction fingerprint, and ADMET prediction. Mol. Diver. 2012, 16, 787−02.  doi: 10.1007/s11030-012-9405-y

    32. [32]

      Roy, K. K.; Saxena, A. K. Structural basis for the β-adrenergic receptor subtype selectivity of the representative agonists and antagonists. J. Chem. Inf. Model. 2011, 51, 1405−22.  doi: 10.1021/ci2000874

    33. [33]

      Huang, Y. Y.; Li, Z.; Cai, Y. H.; Feng, L. J.; Wu, Y.; Li, X. S.; Luo, H. B. The molecular basis for the selectivity of tadalafil toward phosphodiesterase 5 and 6: a modeling study. J. Chem. Inf. Model. 2013, 53, 3044−53.  doi: 10.1021/ci400458z

    34. [34]

      Sabbah, D. A.; Vennerstrom, J. L.; Zhong, H. Z. Binding selectivity studies of phosphoinositide 3-kin-ases using free energy calculations. J. Chem. Inf. Model. 2012, 52, 3213−24.  doi: 10.1021/ci3003057

    35. [35]

      Chang, H. W.; Chung, F. S.; Yang, C. N. Molecular modeling of p38alpha mitogen-activated protein kinase inhibitors through 3D-QSAR and molecular dynamics simulations. J. Chem. Inf. Model. 2013, 53, 1775−86.  doi: 10.1021/ci4000085

    36. [36]

      Clark, M.; Cramer Ⅲ, R. D.; Van Opdenbosch, N. Validation of the general purpose tripos 5.2 force field. J. Comput. Chem. 1989, 10, 982−1012.  doi: 10.1002/jcc.540100804

    37. [37]

      Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity – a rapid access to atomic charges. Tetrahedron 1980, 36, 3219−3228.  doi: 10.1016/0040-4020(80)80168-2

    38. [38]

      Pearlman, D. A.; Case, D. A.; Caldwell, J. W.; Ross, W. S.; Cheatham, T. E.; DeBolt, S.; Ferguson, D.; Seibel, G.; Kollman, P. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comp. Phys. Commun. 1995, 91, 1−41.  doi: 10.1016/0010-4655(95)00041-D

    39. [39]

      Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. Theor. Comput. 2015, 11, 3696−3713.  doi: 10.1021/acs.jctc.5b00255

    40. [40]

      Miyamoto, S.; Kollman, P. A. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992, 13, 952−962.  doi: 10.1002/jcc.540130805

    41. [41]

      Humphrey, W.; Dalke, A.; Schulten, K. VMD-visual molecular dynamics. J. Molec. Graphics 1996, 14, 33−38.  doi: 10.1016/0263-7855(96)00018-5

    42. [42]

      Han, J.; Chen, Y.; Yang, C.; Liu, T.; Wang, M.; Xu, H.; Zhang, L.; Zheng, C.; Song, Y.; Zhu, J. Structure-based optimization leads to the discovery of NSC765844, a highly potent, less toxic and orally efficacious dual PI3K/mTOR inhibitor. Eur. J. Med. Chem. 2016, 122, 684−701.  doi: 10.1016/j.ejmech.2016.06.030

  • 加载中
    1. [1]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    2. [2]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    3. [3]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    4. [4]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    5. [5]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    6. [6]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    7. [7]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    8. [8]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    9. [9]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    10. [10]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    11. [11]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    12. [12]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    13. [13]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    14. [14]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    15. [15]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    16. [16]

      Kai YeZhicheng YeChuantao WangZhilai LuoCheng LianChunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033

    17. [17]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    18. [18]

      Kun ZouYihang XiaoJinyu YangMingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497

    19. [19]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    20. [20]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

Metrics
  • PDF Downloads(1)
  • Abstract views(300)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return