3D-QSAR, Molecular Docking and Molecular Dynamics Simulations of 3-Phenylsulfonylaminopyridine Derivatives as Novel PI3Kα Inhibitors
- Corresponding author: Zhong-Hua WANG, wzhsit@163.com Fan-Hong WU, wfh@sit.edu.cn
Citation:
Xiang-Cong WANG, Mao-Cheng YANG, Mo-Xuan ZHANG, Yin-Jie HU, Zhong-Hua WANG, Fan-Hong WU. 3D-QSAR, Molecular Docking and Molecular Dynamics Simulations of 3-Phenylsulfonylaminopyridine Derivatives as Novel PI3Kα Inhibitors[J]. Chinese Journal of Structural Chemistry,
;2021, 40(12): 1567-1585.
doi:
10.14102/j.cnki.0254-5861.2011-3216
Fry, M. J. Structure, regulation and function of phosphoinositide 3-kinases. Biochim. Biophys. Acta 1994, 1226, 237−268.
doi: 10.1016/0925-4439(94)90036-1
Soler, A.; Angulo-Urarte, A.; Graupera, M. PI3K at the crossroads of tumor angiogenesis signaling pathways. Mol. Cell Oncol. 2015, 2, e975624−10.
doi: 10.4161/23723556.2014.975624
Bader, A. G.; Kang, S.; Zhao, L.; Vogt, P. K. Oncogenic PI3K deregulates transcription and translation. Nat. Rev. Cancer 2005, 5, 921−929.
doi: 10.1038/nrc1753
Engelman, J. A.; Luo, J.; Cantley, L. C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006, 7, 606−619.
Rewcastle, G. W.; Gamage, S. A.; Flanagan, J. U.; Kendall, J. D.; Denny, W. A.; Baguley, B. C.; Buchanan, C. M.; Chao, M.; Kestell, P.; Kolekar, S.; Lee, W. J.; Lill, C. L.; Malik, A.; Singh, R.; Jamieson, S. M.; Shepherd, P. R. Synthesis and biological evaluation of novel phosphatidylinositol 3-kinase inhibitors: solubilized 4-substituted benzimidazole analogs of 2-(difluoromethyl)-1-[4, 6-di(4-morpholinyl)-1, 3, 5-triazin-2-yl]-1H-benzimidazole (ZSTK474). Eur. J. Med. Chem. 2013, 64, 137−147.
doi: 10.1016/j.ejmech.2013.03.038
Vanhaesebroeck, B.; Guillermet-Guibert, J.; Graupera, M.; Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol. 2010, 11, 329−341.
Paddock, M. N.; Field, S. J.; Cantley, L. C. Treating cancer with phosphatidylinositol-3-kinase inhibitors: increasing efficacy and overcoming resistance. J. Lipid Res. 2019, 60, 747−752.
doi: 10.1194/jlr.S092130
Thorpe, L. M.; Yuzugullu, H.; Zhao, J. J. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat. Rev. Cancer 2015, 15, 7−24.
doi: 10.1038/nrc3860
Swat, W.; Montgrain, V.; Doggett, T. A.; Douangpanya, J.; Puri, K.; Vermi, W.; Diacovo, T. G. Essential role of PI3Kdelta and PI3Kgamma in thymocyte survival. Blood 2006, 107, 2415−2422.
doi: 10.1182/blood-2005-08-3300
Yuan, T. L.; Cantley, L. C. PI3K pathway alterations in cancer: variations on a theme. Oncogen. 2008, 27, 5497−5510.
doi: 10.1038/onc.2008.245
Rewcastle, G. W.; Gamage, S. A.; Flanagan, J. U.; Frederick, R.; Denny, W. A.; Baguley, B. C.; Kestell, P.; Singh, R.; Kendall, J. D.; Marshall, E. S.; Lill, C. L.; Lee, W. J.; Kolekar, S.; Buchanan, C. M.; Jamieson, S. M.; Shepherd, P. R. Synthesis and biological evaluation of novel analogues of the pan class Ⅰ phosphatidylinositol 3-kinase (PI3K) inhibitor 2-(difluoromethyl)-1-[4, 6-di(4-morpholinyl)-1, 3, 5-triazin-2-yl]-1H-benzimidazole (ZSTK474). J. Med. Chem. 2011, 54, 7105−7126.
doi: 10.1021/jm200688y
Falasca, M.; Hughes, W. E.; Dominguez, V.; Sala, G.; Fostira, F.; Fang, M. Q.; Cazzolli, R.; Shepherd, P. R.; James, D. E.; Maffucci, T. The role of phosphoinositide 3-kinase C2alpha in insulin signaling. J. Biol. Chem. 2007, 282, 28226−28236.
doi: 10.1074/jbc.M704357200
Liu, X.; Xu, Y.; Zhou, Q.; Chen, M.; Zhang, Y.; Liang, H.; Zhao, J.; Zhong, W.; Wang, M. PI3K in cancer: its structure, activation modes and role in shaping tumor microenvironment. Future Oncology 2018, 14, 665−674.
doi: 10.2217/fon-2017-0588
Singh, P.; Dar, M. S.; Dar, M. J. p110alpha and p110beta isoforms of PI3K signaling: are they two sides of the same coin? FEBS Lett. 2016, 590, 3071−3082.
doi: 10.1002/1873-3468.12377
Zhu, J.; Jia, L.; Jiang, Y.; Yu, Q.; Xu, L.; Cai, Y.; Chen, Y.; Li, H.; Gang, H.; Liang, W.; Jin, J. Integrated molecular modeling techniques to reveal selective mechanisms of inhibitors to PI3Kδ with marketed Idelalisib. Chem. Biol. Drug Des. 2021, 97, 1158−1169.
doi: 10.1111/cbdd.13838
Scott, W. J.; Hentemann, M. F.; Rowley, R. B.; Bull, C. O.; Jenkins, S.; Bullion, A. M.; Johnson, J.; Redman, A.; Robbins, A. H.; Esler, W.; Fracasso, R. P.; Garrison, T.; Hamilton, M.; Michels, M.; Wood, J. E.; Wilkie, D. P.; Xiao, H.; Levy, J.; Stasik, E.; Liu, N.; Schaefer, M.; Brands, M.; Lefranc, J. Discovery and SAR of novel 2, 3-dihydroimidazo[1, 2-c]quinazoline PI3K inhibitors: identification of copanlisib (BAY 80-6946). ChemMedChem. 2016, 11, 1517−1530.
doi: 10.1002/cmdc.201600148
Garces, A. E.; Stocks, M. J. ClassⅠPI3K clinical candidates and recent inhibitor design strategies: a medicinal chemistry perspective. J. Med. Chem. 2019, 62, 4815−4850.
doi: 10.1021/acs.jmedchem.8b01492
Furet, P.; Guagnano, V.; Fairhurst, R. A.; Imbach-Weese, P.; Bruce, I.; Knapp, M.; Fritsch, C.; Blasco, F.; Blanz, J.; Aichholz, R.; Hamon, J.; Fabbro, D.; Caravatti, G. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg. Med. Chem. Lett. 2013, 23, 3741−3748.
doi: 10.1016/j.bmcl.2013.05.007
Cramer, R. D.; Patterson, D. E.; Bunce, J. D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988, 110, 5959−5967.
doi: 10.1021/ja00226a005
Klebe, G.; Abraham, U.; Mietzner, T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem. 1994, 37, 4130−46.
doi: 10.1021/jm00050a010
Han, F.; Lin, S.; Liu, P.; Liu, X.; Tao, J.; Deng, X.; Yi, C.; Xu, H. Discovery of a novel series of thienopyrimidine as highly potent and selective PI3K inhibitors. ACS Med. Chem. Lett. 2015, 6, 434−438.
doi: 10.1021/ml5005014
Lin, S.; Jin, J.; Liu, Y.; Tian, H.; Zhang, Y.; Fu, R.; Zhang, J.; Wang, M.; Du, T.; Ji, M.; Wu, D.; Zhang, K.; Sheng, L.; Li, Y.; Chen, X.; Xu, H. Discovery of 4-methylquinazoline based PI3K inhibitors for the potential treatment of idiopathic pulmonary fibrosis. J. Med. Chem. 2019, 62, 8873−8879.
doi: 10.1021/acs.jmedchem.9b00969
Lin, S.; Wang, C.; Ji, M.; Wu, D.; Lv, Y.; Sheng, L.; Han, F.; Dong, Y.; Zhang, K.; Yang, Y.; Li, Y.; Chen, X.; Xu, H. Discovery of new thienopyrimidine derivatives as potent and orally efficacious phosphoinositide 3-kinase inhibitors. Bioorg. Med. Chem. 2018, 26, 637−646.
doi: 10.1016/j.bmc.2017.12.025
Lin, S.; Han, F.; Liu, P.; Tao, J.; Zhong, X.; Liu, X.; Yi, C.; Xu, H. Identification of novel 7-amino-5-methyl-1, 6-naphthyridin-2(1H)-one derivatives as potent PI3K/mTOR dual inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 790−793.
doi: 10.1016/j.bmcl.2013.12.112
Han, F.; Lin, S.; Liu, P.; Tao, J.; Yi, C.; Xu, H. Synthesis and structure-activity relationships of PI3K/mTOR dual inhibitors from a series of 2-amino-4-methylpyrido[2, 3-d]pyrimidine derivatives. Bioorg. Med. Chem. Lett. 2014, 24, 4538−4541.
doi: 10.1016/j.bmcl.2014.07.073
Ran, T.; Lu, T.; Yuan, H. L.; Liu, H. C.; Wang, J.; Zhang, W. W.; Leng, Y.; Lin, G. W.; Zhuang, S. L.; Chen, Y. D. A selectivity study on mTOR/PI3K alpha inhibitors by homology modeling and 3D-QSAR. J. Mol. Model. 2012, 18, 171−86.
doi: 10.1007/s00894-011-1034-3
Yuan, H. L.; Tai, W. T.; Hu, S. H.; Liu, H. C.; Zhang, Y. M.; Yao, S. H.; Ran, T.; Lu, S.; Ke, Z. P.; Xiong, X.; Xu, J. X.; Chen, Y. D.; Lu, T. Fragment-based strategy for structural optimization in combination with 3D-QSAR. J. Comput. Aided Mol. Des. 2013, 27, 897−15.
doi: 10.1007/s10822-013-9687-x
Yuan, H.; Liu, H.; Liu, C. W.; Wang, F.; Zhang, Y.; Yao, S.; Ran, T.; Lu, S.; Ke, Z.; Xiong, X.; Xu, J.; Chen, Y.; Lu, T. Molecular modelling on small molecular CDK2 inhibitors: an integrated approach using a combination of molecular docking, 3D-QSAR and pharmacophore modelling. SAR QSAR Environ. Res. 2013, 24, 795−17.
doi: 10.1080/1062936X.2013.815655
Leng, Y.; Lu, T.; Yuan, H. L.; Liu, H. C.; Lu, S.; Zhang, W. W.; Jiang, Y. L.; Chen, Y. D. QSAR studies on imidazopyrazine derivatives as aurora a kinase inhibitors. SAR QSAR Environ. Res. 2012, 23, 705−30.
doi: 10.1080/1062936X.2012.719541
Lu, S.; Liu, H. C.; Chen, Y. D.; Yuan, H. L.; Sun, S. L.; Gao, Y. P.; Yang, P.; Zhang, L.; Lu, T. Combined pharmacophore modeling, docking, and 3D-QSAR studies of PLK1 inhibitors. Int. J. Mol. Sci. 2011, 12, 8713−8739.
doi: 10.3390/ijms12128713
Zhang, Y. M.; Liu, H. C.; Jiao, Y.; Yuan, H. L.; Wang, F. G.; Lu, S.; Yao, S. H.; Ke, Z. P.; Tai, W. T.; Jiang, Y. L.; Chen, Y. D.; Lu, T. De novo design of N-(pyridin-4-ylmethyl)aniline derivatives as KDR inhibitors: 3D-QSAR, molecular fragment replacement, protein-ligand interaction fingerprint, and ADMET prediction. Mol. Diver. 2012, 16, 787−02.
doi: 10.1007/s11030-012-9405-y
Roy, K. K.; Saxena, A. K. Structural basis for the β-adrenergic receptor subtype selectivity of the representative agonists and antagonists. J. Chem. Inf. Model. 2011, 51, 1405−22.
doi: 10.1021/ci2000874
Huang, Y. Y.; Li, Z.; Cai, Y. H.; Feng, L. J.; Wu, Y.; Li, X. S.; Luo, H. B. The molecular basis for the selectivity of tadalafil toward phosphodiesterase 5 and 6: a modeling study. J. Chem. Inf. Model. 2013, 53, 3044−53.
doi: 10.1021/ci400458z
Sabbah, D. A.; Vennerstrom, J. L.; Zhong, H. Z. Binding selectivity studies of phosphoinositide 3-kin-ases using free energy calculations. J. Chem. Inf. Model. 2012, 52, 3213−24.
doi: 10.1021/ci3003057
Chang, H. W.; Chung, F. S.; Yang, C. N. Molecular modeling of p38alpha mitogen-activated protein kinase inhibitors through 3D-QSAR and molecular dynamics simulations. J. Chem. Inf. Model. 2013, 53, 1775−86.
doi: 10.1021/ci4000085
Clark, M.; Cramer Ⅲ, R. D.; Van Opdenbosch, N. Validation of the general purpose tripos 5.2 force field. J. Comput. Chem. 1989, 10, 982−1012.
doi: 10.1002/jcc.540100804
Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity – a rapid access to atomic charges. Tetrahedron 1980, 36, 3219−3228.
doi: 10.1016/0040-4020(80)80168-2
Pearlman, D. A.; Case, D. A.; Caldwell, J. W.; Ross, W. S.; Cheatham, T. E.; DeBolt, S.; Ferguson, D.; Seibel, G.; Kollman, P. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comp. Phys. Commun. 1995, 91, 1−41.
doi: 10.1016/0010-4655(95)00041-D
Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. Theor. Comput. 2015, 11, 3696−3713.
doi: 10.1021/acs.jctc.5b00255
Miyamoto, S.; Kollman, P. A. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992, 13, 952−962.
doi: 10.1002/jcc.540130805
Humphrey, W.; Dalke, A.; Schulten, K. VMD-visual molecular dynamics. J. Molec. Graphics 1996, 14, 33−38.
doi: 10.1016/0263-7855(96)00018-5
Han, J.; Chen, Y.; Yang, C.; Liu, T.; Wang, M.; Xu, H.; Zhang, L.; Zheng, C.; Song, Y.; Zhu, J. Structure-based optimization leads to the discovery of NSC765844, a highly potent, less toxic and orally efficacious dual PI3K/mTOR inhibitor. Eur. J. Med. Chem. 2016, 122, 684−701.
doi: 10.1016/j.ejmech.2016.06.030
Zimo Yang , Yan Tong , Yongbo Liu , Qianlong Liu , Zhihao Ni , Yuna He , Yu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577
Xiongbo Song , Jinwen Xiao , Juan Wu , Li Sun , Long Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844
Yan Cheng , Hua-Peng Ruan , Yan Peng , Longhe Li , Zhenqiang Xie , Lang Liu , Shiyong Zhang , Hengyun Ye , Zhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
Yanwei Duan , Qing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905
Shiyu Hou , Maolin Sun , Liming Cao , Chaoming Liang , Jiaxin Yang , Xinggui Zhou , Jinxing Ye , Ruihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Minghao Hu , Tianci Xie , Yuqiang Hu , Longjie Li , Ting Wang , Tongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
Dongpu Wu , Zheng Yang , Yuchen Xia , Lulu Wu , Yingxia Zhou , Caoyuan Niu , Puhui Xie , Xin Zheng , Zhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353
Bingwei Wang , Yihong Ding , Xiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721
Kai Ye , Zhicheng Ye , Chuantao Wang , Zhilai Luo , Cheng Lian , Chunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033
Jisheng Liu , Junli Chen , Xifeng Zhang , Yin Wu , Xin Qi , Jie Wang , Xiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779
Kun Zou , Yihang Xiao , Jinyu Yang , Mingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497
Yuexi Guo , Zhaoyang Li , Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067
Qihan Lin , Jiabin Xing , Yue-Yang Liu , Gang Wu , Shi-Jia Liu , Hui Wang , Wei Zhou , Zhan-Ting Li , Dan-Wei Zhang . taBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119