Citation: Yong-Lan FENG, Wu-Jiu JIANG, Fu-Xing ZHANG, Dai-Zhi KUANG. Synthesis, Structural Characterization, Fluorescence Properties and Herbicidal Activity of Bis(substituted salicylaldehyde) Carbohydrazide Dibutyltin Complexes[J]. Chinese Journal of Structural Chemistry, ;2021, 40(12): 1639-1646. doi: 10.14102/j.cnki.0254-5861.2011-3214 shu

Synthesis, Structural Characterization, Fluorescence Properties and Herbicidal Activity of Bis(substituted salicylaldehyde) Carbohydrazide Dibutyltin Complexes

  • Corresponding author: Dai-Zhi KUANG, hnkcq@qq.com
  • Received Date: 10 April 2021
    Accepted Date: 19 August 2021

    Fund Project: the Innovation Platform Open Foundation for Colleges and Universities of Hunan Province 16k011

Figures(2)

  • A series of dibutyltin complexes, (Bu2Sn)2L, [(Bu2Sn)2L]3 and H2LSnBu2, were synthesized by microwave-assisted methanolic solvothermal method, where H4L is [2-(OH)-R-ArCH=NNH]2CX, and X = O, R = 4-NEt2 (T1), 5-Br (T2); X = S, R = H (T3); R = 5-Br (T4). Their structures were characterized by elemental analysis, IR and (1H, 13C)-NMR spectra. The molecular structure of T2 was confirmed by X-ray diffraction. The crystal of T2 belongs to monoclinic system, space group Ia. Five-coordinated distorted triangular bipyramids and six-coordinated distorted octahedral configurations were formed by the coordination of oxygen and nitrogen atoms of ligand with two dibutyltins, thus forming a trimeric hexanuclear butyltin complex by the cross coordination of three units (Bu2Sn)2L with enol imines. The T2 and T4 exhibit fluorescence emission in DMF solvents and DMF-water mixture. The fluorescence intensity of T2-DMF-H2O system decreases almost linearly with the increase of water volume fraction (WVF). The aggregation fluorescence enhancement effect of T4-DMF-H2O solution system increases with the increase of WVF at the range of 0~20% WVF. When WVF is more than 20%, the fluorescence intensity decreases with the increase of WVF. In addition, T1~T4 have broad growth activities on target plants, such as Portulaca oleracea L., Amaranthus spinosus L., Cassia tora L., Brassica campestris L.ssp.chinensis var.utilis Tsen et Lee, and Amaranthus tricolor L., and can be used as a candidate herbicide for further research.
  • 加载中
    1. [1]

      Mandal, S. K.; Que, L. Models for amide ligation in nonheme iron enzymes. Inorg. Chem. 1997, 36, 5424–5425.  doi: 10.1021/ic970541y

    2. [2]

      Terrence, J. C.; Brian, G. F.; Zheng, G. H.; Kimberly, L. K.; Eckard, M.; Clifford, E. F. R.; Wright, L. J. High valent transition metal chemistry. Synthesis and characterization of an intermediate-spin iron(Ⅳ) complex of a strong pi-acid ligand. J. Am. Chem. Soc. 1992, 114, 7248725.

    3. [3]

      Wu, W. S.; Dai, J. C.; Zheng, Y. Y.; Huang, T. T.; Lan, X. R.; Lin, Y. X. Crystal structure and fluorescence character of palladium(Ⅱ) complex containing salicylidene thiosemicarbazone. Acta Chim. Sinica 2004, 62, 18011806.

    4. [4]

      Sun, G. C.; Qu, J. Q.; Wang, L. F.; Chen, N. S.; Li, Y.; Chen, X. G.; Xie, J. X. Synthesis, characterization and biological activites of transition metal complexes with Schiff base ligand 4-[indol-3-yl]-but-3-en-2-one benzoyl hydrazone. Chin. J. Inorg. Chem. 2005, 21, 10691072.

    5. [5]

      Yu, C. J.; Jiao, L. J.; Zhang, P.; Feng, Z. Y.; Cheng, C.; Wei, Y.; Mu, X. L.; Hao, E. H. Highly fluorescent BF2 complexes of hydeazine-Schiff base linked bispyrrole. Org. Lett. 2014, 16, 3048–3051.  doi: 10.1021/ol501162f

    6. [6]

      Sutradhar, M.; Barman, T. R.; Rentschle, E. Coordination versatility of 1, 5-bis(salicylidene)carbohydrazide in Ni(Ⅱ) complexes. Inorg. Chem. Commun. 2014, 39, 140143.  doi: 10.1016/j.inoche.2013.11.018

    7. [7]

      Zhu, J. H.; Zheng, X. D.; Guo, G. Z.; Zhang, Y. Q.; Wu, B. W. Microwave-assisted synthesis of asymmetrical 1, 5-disubstituted carbonohydrazide and crystal structure. Chin. J. Org. Chem. 2015, 35, 1975–1980.  doi: 10.6023/cjoc201503004

    8. [8]

      Feng, Y. L.; Zhang, F. X.; Yu, J. X.; Jiang, W. J.; Kuang, D. Z. Syntheses, structures, spectroscopic properties and herbicidal activity of 1-(2-hydroxybenzylidene)-5-(4-hydroxy-3-methoxybenzylidene) carbohydrazide butyltin complexes. Chin. J. Inorg. Chem. 2018, 34, 18571863.

    9. [9]

      Mirta, R.; Nives, G.; Ivan, H.; Tomislav, J.; Nenad, J.; Janez, P.; Primoz, S.; Predrag, N. Multiple solid forms of 1, 5-bis(salicylidene)carbohydrazide: polymorph-modulated thermal reactivity. Cryst. Growth Des. 2014, 14, 2900–2912.  doi: 10.1021/cg500203k

    10. [10]

      Feng, Y. L.; Zhang, F. X.; Kuang, D. Z.; Yang, C. L. Two novel dibutyltin complexes with trimers and hexanuclear based on the bis(5-Cl/Me-salicylaldehyde) carbohydrazide: syntheses, structures, fluorescent properties and herbicidal activity. Chin. J. Struct. Chem. 2020, 39, 682692.

    11. [11]

      Yang, C. L.; Feng, Y. L.; Zhang, F. X.; Yu, J. X.; Jiang, W. J.; Kuang, D. Z. Syntheses, structure and herbicidal activity of bis(substituted salicylaldehyde) carbohydrazide n-butyltin complexes. Chin. J. Appl. Chem. 2018, 35, 795801.

    12. [12]

      Feng, Y. L.; Zhang, F. X.; Kuang, D. Z. Syntheses, structures and herbicidal activity of bis(5-R-2-hydroxybenzylidene) thiocarbohydrazide monobutyltin complexes [R: H(T1), Me(T2)]. Chin. J. Struct. Chem. 2019, 38, 719726.

    13. [13]

      Fang, X. N.; Xiao, Y. A.; Sui, Y.; Hu, R. H.; Chen, H. M. Synthesis, crystal structure and antimicrobial activities of dibutyltin(IV) complex of 1, 5-bis(5-bromo-2-hydroxybenzylidene)thiocarbohydrazide. J. Jinggangshan University 2017, 28, 1418

    14. [14]

      Sheldrick, G. M. SHELXL-2014/7, University of Göttingen, Germany 2014.

    15. [15]

      Jiang, W. J.; Tan, Y. X.; Kuang, D. Z.; Zhang, F. X.; Liu, M. Q. Microwave-assisted self-assembly synthesis of organotin complexes and biological activities. Sci. China-Chem. 2019, 49, 1083093.

    16. [16]

      Yang, C. L.; Feng, Y. L.; Zhang, F. X.; Yu, J. X.; Jiang, W. J.; Kuang, D. Z.; Yang, N. F. Microwave-solvent thermal syntheses, crystal struture and herbicidal activity of bis(3, 5-di-t-butylsalicylaldehyde) carbohydrazide dibutyltin complexes. Chin. J. Inorg. Chem. 2017, 33, 1397–1402.

    17. [17]

      Salam, M. A.; Affan, M. A.; Ahmad, F. B.; Arafath, M. D. A.; Tahir, M. I. M.; Shamsuddin, M. B. Synthesis, characteriztion, antibacterial, and cytotoxic activities of organotin(Ⅳ) complexes derived from N(4)-cyclohexylthiosemicarbazone: X-ray crystal structure of [Ph2SnCl(L)]. J. Coord. Chem. 2012, 65, 31743187.  doi: 10.1080/00958972.2012.711823

    18. [18]

      Mendes, I. C.; Moreira, J. P.; Speziali, N. L.; Mangrich, A. S.; Takahashi, J. A.; Beraldo, H. N(4)-tolyl-2-benzoylpyridine thiosemicarbazones and their copper(II) complexes with significant antifungal activity. Crystal structure of N(4)-para-tolyl-2-benzoylpyridine thiosemicarbazone. J. Braz. Chem. Soc. 2006, 17, 15711577.

    19. [19]

      Jiang, W. J.; Mo, T. Z.; Zhang, F. X.; Kuang, D. Z.; Tan, Y. X. Syntheses, crystal structures and in vitro anticancer activities of dibenzyltin compounds based on the N-(2-phenylacetic acid)-aroyl hydrazone. Chin. J. Struct. Chem. 2020, 39, 673681.

    20. [20]

      Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole. Chem. Commun. 2001, 17401741.

    21. [21]

      Tang, W. X.; Xiang, Y.; Tong, A. J. Salicylaldehyde azines as fluorophores of aggregation-induced emission enhancement characteristics. J. Org. Chem. 2009, 74, 2163–2166.

    22. [22]

      Feng, Y. L.; Kuang, D. Z.; Zhang, F. X.; Yu, J. X.; Jiang, W. J.; Zhu, X. M. Syntheses and crystal structures of bis(4-(diethylamino)salicylaldehyde) azodicarbonhydrazide dibutyltin complex with aggregation induced emission properties. Chin. J. Inorg. Chem. 2019, 35, 307–313.

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    3. [3]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    4. [4]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    5. [5]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    6. [6]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    7. [7]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    8. [8]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    9. [9]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    10. [10]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    11. [11]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    12. [12]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    13. [13]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    14. [14]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    15. [15]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    16. [16]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    17. [17]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    18. [18]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    19. [19]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    20. [20]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

Metrics
  • PDF Downloads(1)
  • Abstract views(161)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return