Citation: Ting WANG, Yu-Miao SU, Feng CHEN, Wen-Mu LI. Synthesis and Characterization of Polyimides Based on Twisted Non-coplanar Backbone Containing Indolocarbazole[J]. Chinese Journal of Structural Chemistry, ;2021, 40(12): 1611-1620. doi: 10.14102/j.cnki.0254-5861.2011-3212 shu

Synthesis and Characterization of Polyimides Based on Twisted Non-coplanar Backbone Containing Indolocarbazole

  • Corresponding author: Wen-Mu LI, liwm@fjirsm.ac.cn
  • Received Date: 8 April 2021
    Accepted Date: 9 June 2021

    Fund Project: Innovation Academy for Green Manufacture, Chinese Academy of Sciences IAGM2020C22the Guiding Project of Fujian Province Science and Technology Department 2020H0050

Figures(10)

  • A diamine monomer (4, 4΄-(((5, 11-dihydroindolo[3, 2-b]carbazole-6, 12-diyl)bis(4, 1-phenyl-ene))bis(oxy))dianiline) containing a rigid conjugated indolocarbazole was designed and synthesized through a three-step reaction. A series of high-performance functional polyimides were prepared through simple condensation polymerization of the monomer with different industrial dianhydrides 6FDA, BTDA and ODPA, respectively, which exhibit superior thermal stability, good solubility in polar organic solvents and good mechanical properties. The glass transition temperature (Tg) is above 334 ℃, and the 5% weight loss temperature (Td5%) of polyimides under nitrogen atmosphere falls in the range of 502~526 ℃. The tensile strength and tensile modulus are 49.45~60.08 MPa and 1.4~1.6 GPa, respectively. In addition, the maximum fluorescence emission wavelength of polyimides in the NMP solution (0.02 mg/mL) are around 448 nm with blue light emission and 451 nm as film without significant red shift, which indicates the prepared polyimides process a certain application potential in high-performance flexible polymer optoelectronic devices.
  • 加载中
    1. [1]

      Kim, S.; Yoo, H.; Rana, T. R.; Enkhbat, T.; Han, G.; Kim, J.; Song, S.; Kim, K.; Gwak, J.; Eo, Y. J.; Yun, J. H. Effect of crystal orientation and conduction band grading of absorber on efficiency of Cu(In, Ga)Se2 solar cells grown on flexible polyimide foil at low temperature. Adv. Energy Mater. 2018, 8, 1501–1513.

    2. [2]

      Liu, Y.; Qian, C.; Qu, L.; Wu, Y.; Zhang, Y.; Wu, X.; Zou, B.; Chen, W.; Chen, Z.; Chi, Z.; Liu, S.; Chen, X.; Xu, J. A bulk dielectric polymer film with intrinsic ultralow dielectric constant and outstanding comprehensive properties. Chem. Mater. 2015, 27, 6543–6549.  doi: 10.1021/acs.chemmater.5b01798

    3. [3]

      Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907–974.  doi: 10.1016/j.progpolymsci.2012.02.005

    4. [4]

      Choi, M. C.; Wakita, J.; Ha, C. S.; Ando, S. Highly transparent and refractive polyimides with controlled molecular structure by chlorine side groups. Macromolecules 2009, 42, 5112–5120.  doi: 10.1021/ma900104z

    5. [5]

      Qu, L.; Tang, L.; Bei, R.; Zhao, J.; Chi, Z.; Liu, S.; Chen, X.; Aldred, M. P.; Zhang, Y.; Xu, J. Flexible multifunctional aromatic polyimide film: highly efficient photoluminescence, resistive switching characteristic, and electroluminescence. ACS Appl. Mater. Interfaces 2018, 10, 11430–11435.  doi: 10.1021/acsami.8b02712

    6. [6]

      Qu, L.; Huang, S.; Zhang, Y.; Chi, Z.; Liu, S.; Chen, X.; Xu, J. Multi-functional polyimides containing tetraphenyl fluorene moieties: fluorescence and resistive switching behaviors. J. Mater. Chem. C 2017, 5, 6457–6466.  doi: 10.1039/C7TC01807J

    7. [7]

      Hsiao, S. H.; Wang, H. M.; Chen, W. J.; Lee, T. M.; Leu, C. M. Synthesis and properties of novel triptycene-based polyimides. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 3109–3120.  doi: 10.1002/pola.24748

    8. [8]

      Yen, H. J.; Lin, K. Y.; Liou, G. S. Transmissive to black electrochromic aramids with high near-infrared and multicolor electrochromism based on electroactive tetraphenylbenzidine units. J. Mater. Chem. A 2011, 21, 6230–6237.  doi: 10.1039/c1jm10210a

    9. [9]

      Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907–974.  doi: 10.1016/j.progpolymsci.2012.02.005

    10. [10]

      Liu, Y.; Yi, Z.; Qi, L.; Qin, Z.; Liu, S.; Zhao, C.; Chi, Z.; Xu, J. Synthesis and properties of high-performance functional polyimides containing rigid nonplanar conjugated tetraphenylethylene moieties. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 1302–1314.  doi: 10.1002/pola.26498

    11. [11]

      Wang, H.; Jeyakkumar, P.; Nagarajan, S.; Meng, J.; Zhou, C. Current researches and applications of perylene compounds. Prog. Chem. 2015, 27, 704–743.

    12. [12]

      Lu, X. Y.; Yi, J. J.; Chen, S. T.; Zu, F. H.; Li, R. B. Characterization of impact polypropylene copolymers by solvent fractionation. Chin. J. Polym. Sci. 2012, 01, 131–138.

    13. [13]

      Hamciuc, C.; Hamciuc, E.; Homocianu, M.; Nicolescu, A.; Carja, I. D. Blue light-emitting polyamide and poly(amide-imide)s containing 1, 3, 4-oxadiazole ring in the side chain. Dyes Pigm. 2015, 114, 110–123.  doi: 10.1016/j.dyepig.2014.10.018

    14. [14]

      Kim, H. J.; Skinner, M.; Yu, H.; Oh, J. H.; Briseno, A. L.; Emrick, T.; Kim, B. J.; Hayward, R. C. Water processable polythiophene nanowires by photo-cross-linking and click-functionalization. Nano Lett. 2015, 5689–5695.

    15. [15]

      Raj, M. R.; Anandan, S.; Solomon, R. V.; Venuvanalingam, P.; Iyer, S. S. K.; Ashokkumar, M. Synthesis of conjugated perylene diimide-based copolymer with 5, 5΄-bis(4-aminophenyl)-2-2΄-bifuryl moiety as an active material for organic photovoltaics. J. Photoch. Photobio. A 2012, 247, 52–62.  doi: 10.1016/j.jphotochem.2012.07.019

    16. [16]

      Yan, S.; Chen, W.; Yang, X.; Chen, C.; Huang, M.; Xu, Z.; Yeung, K. W. K.; Yi, C. F. Soluble polyimides based on a novel pyridine-containing diamine m, p-PAPP and various aromatic dianhydrides. Des. Monomers Polym. 2011, 66, 1191–1206.

    17. [17]

      Morin, J. F.; Leclerc, M. Syntheses of conjugated polymers derived from n-alkyl-2, 7-carbazoles. Macromolecules 2001, 34, 4680–4682.  doi: 10.1021/ma010152u

    18. [18]

      Thomas, K. R. J.; Lin, J. T.; Tao, Y. T.; Ko, C. W. Light-emitting carbazole derivatives: potential electroluminescent materials. Adv. Mater. 2001, 123, 9404–9411

    19. [19]

      Huang, Y. C.; Wang, K. L.; Lee, W. Y.; Liao, Y. A.; Liaw, D. J.; Lee, K. R.; Lai, J. Y. Novel heterocyclic poly(pyridine-imide)s with unsymmetric carbazole substituent and noncoplanar structure: high thermal, mechanical and optical transparency, electrochemical, and electrochromic properties. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 405–412.  doi: 10.1002/pola.27438

    20. [20]

      Kochapradist, P.; Prachumrak, N.; Tarsang, R.; Keawin, T.; Jungsuttiwong, S.; Sudyoadsuk, T.; Promarak, V. Multi-triphenylamine-substituted carbazoles: synthesis, characterization, properties, and applications as hole-transporting materials. Tetrahedron Lett. 2013, 54, 3683–3687.  doi: 10.1016/j.tetlet.2013.05.007

    21. [21]

      Kim, S. H.; Cho, I.; Sim, M. K.; Park, S.; Park, S. Y. Highly efficient deep-blue emitting organic light emitting diode based on the multifunctional fluorescent molecule comprising covalently bonded carbazole and anthracene moieties. J. Mater. Chem. A 2011, 21, 9139–9148.  doi: 10.1039/c1jm11111f

    22. [22]

      Wang, K.; Wang, S.; Wei, J.; Chen, S.; Liu, D.; Liu, Y.; Wang, Y. New multifunctional phenanthroimidazole-phosphine oxide hybrids for high-performance red, green and blue electroluminescent devices. J. Mater. Chem. C 2014, 2, 6817–6826.  doi: 10.1039/C4TC00749B

    23. [23]

      Jia, W. B.; Wang, H. W.; Yang, L. M.; Lu, H. B.; Kong, L.; Tian, Y. P.; Tao, X. T.; Yang, J. X. Synthesis of two novel indolo[3, 2-b]carbazole derivatives with aggregation-enhanced emission property. J. Mater. Chem. C 2013, 1, 7092–7101.  doi: 10.1039/c3tc31590h

    24. [24]

      Jose, G. Synthetic methods in step-growth polymers. Macromol. Chem. Phys. 2004.

    25. [25]

      Zuo, P. P.; Su, Y. M.; Li, W. M. Comb-like poly(ether-sulfone) membranes derived from planar 6, 12-diaryl-5, 11-dihydroindolo 3, 2-b carbazole monomer for alkaline fuel cells. Macromol. Rapid Commun. 2016, 37, 1748–1753.  doi: 10.1002/marc.201600497

    26. [26]

      Wakita, J.; Sekino, H.; Sakai, K.; Urano, Y.; Ando, S. J. T. Molecular design, synthesis, and properties of highly fluorescent polyimides. J. Phys. Chem. B 2009, 113, 15212–15224.  doi: 10.1021/jp9072922

  • 加载中
    1. [1]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    2. [2]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    3. [3]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    4. [4]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    5. [5]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    6. [6]

      Zhiqing GeZuxiong PanShuo YanBaoying ZhangXiangyu ShenMozhen WangXuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850

    7. [7]

      Shuai Liang Wen-Jing Jiang Ji-Xiang Hu . Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100430-100430. doi: 10.1016/j.cjsc.2024.100430

    8. [8]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    9. [9]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    10. [10]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    11. [11]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    12. [12]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    13. [13]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    14. [14]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    15. [15]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    16. [16]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    17. [17]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    18. [18]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    19. [19]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    20. [20]

      Lingjiang KouYong WangJiajia SongTaotao AiWenhu LiMohammad Yeganeh GhotbiPanya WattanapaphawongKoji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368

Metrics
  • PDF Downloads(2)
  • Abstract views(863)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return