Citation: Zi-Hao WEN, Shuang LI, Min-Yi ZHANG. Theoretical Study of Non-heme Mn(Ⅴ)-oxo Complexes: Formation Mechanism, Electronic Nature, and Hydroxylation Reactivity[J]. Chinese Journal of Structural Chemistry, ;2021, 40(12): 1557-1566. doi: 10.14102/j.cnki.0254-5861.2011-3209 shu

Theoretical Study of Non-heme Mn(Ⅴ)-oxo Complexes: Formation Mechanism, Electronic Nature, and Hydroxylation Reactivity

  • Corresponding author: Min-Yi ZHANG, myzhang@fjirsm.ac.cn
  • Received Date: 2 April 2021
    Accepted Date: 7 May 2021

Figures(8)

  • Many non-heme manganese complexes exhibit high reactivity and enantioselectivity for the activation of C–H bonds. Recently, Mn(PDP) complexes (PDP = N,N΄-bis(pyridine-2-ylmethyl)-2,2΄-bipyrrolidine) have been reported to activate C–H bonds selectively in the presence of carboxylic acids. In this study, we performed density functional theory calculations to investigate the formation and hydroxylation mechanisms of Mn(PDP) complexes. Our calculation results showed that Mn(Ⅲ)(PDP) complexes react with H2O2 and carboxylic acid to form Mn(Ⅴ)-oxo oxidation intermediate. The main oxidation intermediate, [(PDP)Mn(Ⅳ)(O···OC(O)CH3)2-·]2+, was found to have the characteristics of S(Mn) = 3/2 manganese(Ⅳ) center antiferromagnetically coupled to a σ*O–O radical, where the O–O bond is not completely broken. Furthermore, [(PDP)Mn(Ⅳ)(O···OC(O)CH3)2-·]2+ was shown to have two single electron-accepting orbitals (α Mn-dxy and β σ*O–O) that can simultaneously interact with a doubly occupied electron-donating orbital (σC–H) of substrate. Therefore, [(PDP)Mn(Ⅳ)(O···OC(O)CH3)2-·]2+ species can act as a two-electron oxidant for the C−H bond functionalization. As a result, the C−H bond hydroxylation by [(PDP)Mn(Ⅳ)(O···OC(O)CH3)2-·]2+ species was a single step. Following the H-abstraction with a low barrier of 4.5 kcal/mol, hydroxyl group would immediately rebound to the radical carbon without barrier. These results provide new insights toward the further development of non-heme manganese catalysts.
  • 加载中
    1. [1]

      Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. P450 enzymes: their structure, reactivity, and selectivity-modeled by QM/MM calculations. Chem. Rev. 2010, 110, 949−1017.  doi: 10.1021/cr900121s

    2. [2]

      Lu, Q.; Song, J.; Wu, P.; Li, C.; Thiel, W. Mechanistic insights into the directing effect of Thr303 in ethanol oxidation by cytochrome P450 2E1. ACS Catal. 2019, 9, 4892−4901.  doi: 10.1021/acscatal.9b00907

    3. [3]

      Lu, J.; Wang, B.; Shaik, S.; Lai, W. QM/MM calculations reveal the important role of α-heteroatom substituents in controlling selectivity of mononuclear nonheme HppE-catalyzed reactions. ACS Catal. 2020, 10, 9521−9532.  doi: 10.1021/acscatal.0c01803

    4. [4]

      Yan, X.; Song, J.; Lu, Q.; Li, C. Mechanistic insights into the crucial roles of Glu76 residue in nickel-dependent quercetin 2, 4-dioxygenase for quercetin oxidative degradation. J. Catal. 2020, 387, 73−83.  doi: 10.1016/j.jcat.2020.04.016

    5. [5]

      Kalita, S.; Shaik, S.; Kisan, H. K.; Dubey, K. D. A paradigm shift in the catalytic cycle of P450 – the preparatory choreography during O2 binding, and origins of the necessity for two protonation pathways. ACS Catal. 2020, 10, 11481−11492.  doi: 10.1021/acscatal.0c02775

    6. [6]

      Wang, J. B.; Huang, Q.; Peng, W.; Wu, P.; Yu, D.; Chen, B.; Wang, B.; Reetz, M. T. P450-BM3-catalyzed sulfoxidation versus hydroxylation: a common or two different catalytically active species? J. Am. Chem. Soc. 2020, 142, 2068−2073.  doi: 10.1021/jacs.9b13061

    7. [7]

      Wang, B.; Cao, Z.; Rovira, C.; Song, J.; Shaik, S. Fenton-derived OH radicals enable the MPnS enzyme to convert 2-hydroxyethylphosphonate to methylphosphonate: insights from ab initio QM/MM MD simulations. J. Am. Chem. Soc. 2019, 141, 9284−9291.  doi: 10.1021/jacs.9b02659

    8. [8]

      Li, H.; Liu, Y. Mechanistic investigation of isonitrile formation catalyzed by the nonheme iron/α-KG-D ependent decarboxylase (ScoE). ACS Catal. 2020, 10, 2942−2957.  doi: 10.1021/acscatal.9b05411

    9. [9]

      Su, H.; Wang, B.; Shaik, S. Quantum-mechanical/molecular-mechanical studies of CYP11A1-catalyzed biosynthesis of pregnenolone from cholesterol reveal a C−C bond cleavage reaction that occurs by a compound Ⅰ-mediated electron transfer. J. Am. Chem. Soc. 2019, 141, 20079−20088.  doi: 10.1021/jacs.9b08561

    10. [10]

      Li, G.; Kates, P. A.; Dilger, A. K.; Cheng, P. T.; Ewing, W. R.; Groves, J. T. Manganese-catalyzed desaturation of N-acyl amines and ethers. ACS Catal. 2019, 9, 9513−9517.  doi: 10.1021/acscatal.9b03457

    11. [11]

      Rebelo, S. L. H.; Pires, S. M. G.; Simões, M. M. Q.; de Castro, B.; Neves, M. G. P. M. S.; Medforth, C. J. Biomimetic oxidation of benzofurans with hydrogen peroxide catalyzed by Mn(Ⅲ) porphyrins. Catalysts 2020, 10−14.

    12. [12]

      Liu, W.; Groves, J. T. Manganese catalyzed C−H halogenation. Acc. Chem. Res. 2015, 48, 1727−35.  doi: 10.1021/acs.accounts.5b00062

    13. [13]

      Li, G.; Dilger, A. K.; Cheng, P. T.; Ewing, W. R.; Groves, J. T. Selective C−H halogenation with a highly fluorinated manganese porphyrin. Angew. Chem. Int. Ed. 2018, 57, 1251−1255.  doi: 10.1002/anie.201710676

    14. [14]

      Mandal, D.; Mallick, D.; Shaik, S. Kinetic isotope effect determination probes the spin of the transition state, its stereochemistry, and its ligand sphere in hydrogen abstraction reactions of oxoiron(Ⅳ) complexes. Acc. Chem. Res. 2018, 51, 107−117.  doi: 10.1021/acs.accounts.7b00442

    15. [15]

      Li, C. S.; Wu, W.; Cho, K. B.; Shaik, S. Oxidation of tertiary amines by cytochrome P450-kinetic isotope effect as a spin-state reactivity probe. J. Am. Chem. Soc. 2009, 15, 8492−8503.

    16. [16]

      Kamachi, T.; Yoshizawa, K. A theoretical study on the mechanism of camphor hydroxylation by compound Ⅰ of cytochrome P450. J. Am. Chem. Soc. 2003, 125, 4652−4661.  doi: 10.1021/ja0208862

    17. [17]

      Cho, K. B.; Hirao, H.; Shaik, S.; Nam, W. To rebound or dissociate? This is the mechanistic question in C–H hydroxylation by heme and nonheme metal-oxo complexes. Chem. Soc. Rev. 2016, 45, 1197−1210.  doi: 10.1039/C5CS00566C

    18. [18]

      Ottenbacher, R. V.; Talsi, E. P.; Bryliakov, K. P. Highly enantioselective undirected catalytic hydroxylation of benzylic CH2 groups with H2O2. J. Catal. 2020, 390, 170−177.  doi: 10.1016/j.jcat.2020.08.005

    19. [19]

      Srour, H.; Le Maux, P.; Simonneaux, G. Enantioselective manganese-porphyrin-catalyzed epoxidation and C–H hydroxylation with hydrogen peroxide in water/methanol solutions. Inorg. Chem. 2012, 51, 5850−6.  doi: 10.1021/ic300457z

    20. [20]

      Song, W. J.; Seo, M. S.; George, S. D.; Ohta, T.; Song, R.; Kang, M. J.; Tosha, T.; Kitagawa, T.; Solomon, E. I.; Nam, W. Synthesis, characterization, and reactivities of manganese(Ⅴ)-oxo porphyrin complexes. J. Am. Chem. Soc. 2007, 129, 1268−1277.  doi: 10.1021/ja066460v

    21. [21]

      Oohora, K.; Kihira, Y.; Mizohata, E.; Inoue, T.; Hayashi, T. C(sp3)–H bond hydroxylation catalyzed by myoglobin reconstituted with manganese porphycene. J. Am. Chem. Soc. 2013, 135, 17282−17285.  doi: 10.1021/ja409404k

    22. [22]

      Ohora, K.; Meichin, H.; Kihira, Y.; Sugimoto, H.; Shiro, Y.; Hayashi, T. Manganese(Ⅴ) porphycene complex responsible for inert C–H bnd hydroxylation in a myoglobin matrix. J. Am. Chem. Soc. 2017, 139, 18460−18463.  doi: 10.1021/jacs.7b11288

    23. [23]

      Balcells, D.; Raynaud, C.; Crabtree, R. H.; Eisenstein, O. C−H oxidation by hydroxo manganese(Ⅴ) porphyrins: a DFT study. Chem. Commun. 2009, 13, 1772−4.

    24. [24]

      Nuhant, P.; Oderinde, M. S.; Genovino, J.; Juneau, A.; Gagne, Y.; Allais, C.; Chinigo, G. M.; Choi, C.; Sach, N. W.; Bernier, L.; Fobian, Y. M.; Bundesmann, M. W.; Khunte, B.; Frenette, M.; Fadeyi, O. O. Visible-light-initiated manganese catalysis for C–H alkylation of heteroarenes: applications and mechanistic studies. Angew. Chem. Int. Ed. 2017, 56, 15309−15313.  doi: 10.1002/anie.201707958

    25. [25]

      Li, X. X.; Guo, M.; Qiu, B.; Cho, K. B.; Sun, W.; Nam, W. High-spin Mn(Ⅴ)-oxo intermediate in nonheme manganese complex-catalyzed alkane hydroxylation reaction: experimental and theoretical approach. Inorg. Chem. 2019, 58, 14842−14852.  doi: 10.1021/acs.inorgchem.9b02543

    26. [26]

      Biswas, S.; Mitra, A.; Banerjee, S.; Singh, R.; Das, A.; Paine, T. K.; Bandyopadhyay, P.; Paul, S.; Biswas, A. N. A high spin Mn(Ⅳ)-oxo complex generated via stepwise proton and electron transfer from Mn(Ⅲ)-hydroxo precursor: characterization and C–H bond cleavage reactivity. Inorg. Chem. 2019, 58, 9713−9722.  doi: 10.1021/acs.inorgchem.9b00579

    27. [27]

      Wang, Y.; Janardanan, D.; Usharani, D.; Han, K.; Que, L.; Shaik, S. Nonheme iron oxidant formed in the presence of H2O2 and acetic acid is the cyclic ferric peracetate complex, not a perferryloxo complex. ACS Catal. 2013, 3, 1334−1341.  doi: 10.1021/cs400134g

    28. [28]

      Oloo, W. N.; Banerjee, R.; Lipscomb, J. D.; Que, L. Jr. Equilibrating (L)Fe(Ⅲ)−OOAc and (L)Fe(Ⅴ)(O) species in hydrocarbon oxidations by bio-inspired nonheme iron catalysts using H2O2 and AcOH. J. Am. Chem. Soc. 2017, 139, 17313−17326.  doi: 10.1021/jacs.7b06246

    29. [29]

      Mondal, B.; Neese, F.; Bill, E.; Ye, S. Electronic structure contributions of non-heme oxo-iron(Ⅴ) complexes to the reactivity. J. Am. Chem. Soc. 2018, 140, 9531−9544.  doi: 10.1021/jacs.8b04275

    30. [30]

      Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab-initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields. J. Phys. Chem. 1994, 98, 11623−11627.  doi: 10.1021/j100096a001

    31. [31]

      Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297−3305.  doi: 10.1039/b508541a

    32. [32]

      Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H~Pu. J. Chem. Phys. 2010, 132, 154104−20.  doi: 10.1063/1.3382344

    33. [33]

      Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999−3093.  doi: 10.1021/cr9904009

    34. [34]

      Johansson, A. J.; Blomberg, M. R. A.; Siegbahn, P. E. M. Quantum chemical modeling of the oxidation of dihydroanthracene by the biomimetic nonheme iron catalyst (TMC)Fe-Ⅳ(O)2+. J. Phys. Chem. C 2007, 111, 12397−12406.  doi: 10.1021/jp0730444

    35. [35]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D. 01, Gaussian, Inc. : Wallingford, CT 2013.

    36. [36]

      Dantignana, V.; Serrano-Plana, J.; Draksharapu, A.; Magallon, C.; Banerjee, S.; Fan, R.; Gamba, I.; Guo, Y.; Que, L, Jr.; Costas, M.; Company, A. Spectroscopic and reactivity comparisons between nonheme oxoiron(Ⅳ) and oxoiron(Ⅴ) species bearing the same ancillary ligand. J. Am. Chem. Soc. 2019, 141, 15078−15091.  doi: 10.1021/jacs.9b05758

    37. [37]

      Fan, R.; Serrano-Plana, J.; Oloo, W. N.; Draksharapu, A.; Delgado-Pinar, E.; Company, A.; Martin-Diaconescu, V.; Borrell, M.; Lloret-Fillol, J.; Garcia-Espana, E.; Guo, Y.; Bominaar, E. L.; Que, L. Jr.; Costas, M.; Munck, E. Spectroscopic and DFT characterization of a highly reactive nonheme Fe(Ⅴ)-oxo intermediate. J. Am. Chem. Soc. 2018, 140, 3916−3928.  doi: 10.1021/jacs.7b11400

    38. [38]

      Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580−592.  doi: 10.1002/jcc.22885

    39. [39]

      Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 1996, 14, 33−38.  doi: 10.1016/0263-7855(96)00018-5

    40. [40]

      Chen, H.; Lai, W.; Yao, J.; Shaik, S. Perferryl Fe-v-oxo nonheme complexes: do they have high-spin or low-spin ground states? J. Chem. Theory Comput. 2011, 7, 3049−3053.  doi: 10.1021/ct200614g

    41. [41]

      Bassan, A.; Blomberg, M. R. A.; Siegbahn, P. E. M.; Que, L. A density functional study of O–O bond cleavage for a biomimetic non-heme iron complex demonstrating an Fe-Ⅴ-intermediate. J. Am. Chem. Soc. 2002, 124, 11056−11063.  doi: 10.1021/ja026488g

    42. [42]

      Zima, A. M.; Lyakin, O. Y.; Bryliakov, K. P.; Talsi, E. P. High-spin and low‐spin perferryl intermediates in Fe(PDP)-catalyzed epoxidations. ChemCatChem. 2019, 11, 5345−5352.  doi: 10.1002/cctc.201900842

    43. [43]

      Dai, W.; Shang, S.; Lv, Y.; Li, G.; Li, C.; Gao, S. Highly chemoselective and enantioselective catalytic oxidation of heteroaromatic sulfides via high-valent manganese(Ⅳ)-oxo cation radical oxidizing intermediates. ACS Catal. 2017, 7, 4890−4895.  doi: 10.1021/acscatal.7b00968

    44. [44]

      Miao, C.; Wang, B.; Wang, Y.; Xia, C.; Lee, Y. M.; Nam, W.; Sun, W. Proton-promoted and anion-enhanced epoxidation of olefins by hydrogen peroxide in the presence of nonheme manganese catalysts. J. Am. Chem. Soc. 2016, 138, 936−943.  doi: 10.1021/jacs.5b11579

    45. [45]

      Rice, D. B.; Massie, A. A.; Jackson, T. A. Experimental and multireference ab initio investigations of hydrogen-atom-transfer reactivity of a mononuclear Mn(Ⅳ)-oxo complex. Inorg. Chem. 2019, 58, 13902−13916.  doi: 10.1021/acs.inorgchem.9b01761

  • 加载中
    1. [1]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    4. [4]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    5. [5]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    6. [6]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    7. [7]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    8. [8]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    9. [9]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    10. [10]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    11. [11]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    12. [12]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    13. [13]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    14. [14]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    15. [15]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    16. [16]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    17. [17]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    18. [18]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    19. [19]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    20. [20]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

Metrics
  • PDF Downloads(2)
  • Abstract views(180)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return