Citation: Ming-Yue BI, Yi-Hang WEN, Hai-Xia ZHANG, Jian ZHANG. Syntheses, Crystal Structures and Properties of Two New Zn Based Boron Imidazolate Frameworks[J]. Chinese Journal of Structural Chemistry, ;2021, 40(7): 865-870. doi: 10.14102/j.cnki.0254-5861.2011-3068 shu

Syntheses, Crystal Structures and Properties of Two New Zn Based Boron Imidazolate Frameworks

  • Corresponding author: Yi-Hang WEN, wyh@zjnu.cn
  • Received Date: 13 December 2020
    Accepted Date: 21 February 2021

    Fund Project: the National Key Research and Development Program of China 2018YFA0208600

Figures(6)

  • Two new boron imidazolate frameworks (BIFs), Zn2[HBH(2-mim)3]2(1, 2-PEA)2(EG)2 (BIF-120, EG = ethylene glycol) and Zn[BH(2-mim)3](1, 2-HPEA) (BIF-121), were successfully synthesized by mixing the KBH(2-mim)3 ligand and the semirigid aromatic dicarboxylate ligand 1, 2-benzenediacetic acid (1, 2-H2PEA) under solvothermal conditions. In this paper, the two samples were structurally characterized by single-crystal X-ray diffraction and tested by infrared spectroscopy (IR), UV-visible spectroscopy (UV-Vis), thermogravimetric analysis TGA and X-ray powder diffractions. In addition, the solid-state luminescent properties of these crystals were also investigated.
  • 加载中
    1. [1]

      Rouffet, M.; de Oliveira, C. A. F.; Udi, Y.; Agrawal, A.; Sagi, I.; McCammon, J. A.; Cohen, S. M. From sensors to silencers: quinoline- and benzimidazole-sulfonamides as inhibitors for zinc proteases. J. Am. Chem. Soc. 2010, 132, 8232–8233.  doi: 10.1021/ja101088j

    2. [2]

      Xue, F.; Kumar, P.; Xu, W.; Mkhoyan, K. A.; Tsapatsis, M. Direct synthesis of 7 nm-thick zinc(Ⅱ)-benzimidazole-acetate metal-organic framework nanosheets. Chem. Mater. 2017, 30, 69–73.

    3. [3]

      Combs, A. P.; Zhu, W.; Crawley, M. L.; Glass, B.; Polam, P.; Sparks, R. B.; Metcalf, B. Potent benzimidazole sulfonamide protein tyrosine phosphatase 1B inhibitors containing the heterocyclic (S)-isothiazolidinone phosphotyrosine mimetic. J. Med. Chem. 2006, 49, 3774–3789.  doi: 10.1021/jm0600904

    4. [4]

      Chen, L. Z.; Ji, Q.; Dan, Y. Y. Synthesis, structure, and luminescent and dielectric properties of two novel 1D chains based on a T-shaped tripodal ligand 4-(4, 5-dicarboxy-imidazol-2-yl)pyridine loxide. Chin. J. Struct. Chem. 2016, 35, 1728–1735.

    5. [5]

      Chen, L. Z.; Sun, J.; Ji, Q.; Pan, Q. J.; Huang, Y. Switchable dielectric materials based on 2-methylimidazole. Chin. J. Struct. Chem. 2017, 36, 329–337.

    6. [6]

      Zhang, J.; Wu, T.; Zhou, C.; Chen, S. M.; Feng, P. Y.; Bu, X. H. Zeolitic boron imidazolate frameworks. Angew. Chem. Int. Ed. 2009, 48, 2580–2583.  doi: 10.1002/anie.200900097

    7. [7]

      Zhang, H. X.; Liu, M.; Wen, T.; Zhang, J. Synthetic design of functional boron imidazolate frameworks. Coord. Chem. Rev. 2016, 307, 255–266.  doi: 10.1016/j.ccr.2015.08.003

    8. [8]

      Wu, T.; Zhang, J.; Zhou, C.; Wang, L.; Bu, X. H.; Feng, P. Y. Zeolite RHO-type net with the lightest elements. J. Am. Chem. Soc. 2009, 131, 6111–6113.  doi: 10.1021/ja901725v

    9. [9]

      Zheng, S. T.; Wu, T.; Zhang, J.; Mina, C.; Nieto, R. A.; Bu, X. H.; Feng, P. Y. Porous metal carboxylate boron imidazolate frameworks. Angew. Chem. Int. Ed. 2010, 49, 5362–5366.  doi: 10.1002/anie.201001675

    10. [10]

      Wu, T.; Zhang, J.; Bu, X. H.; Feng, P. Y. Variable lithium coordination modes in two- and three-dimensional lithium boron imidazolate frameworks. Chem. Mater. 2009, 21, 3830–3837.  doi: 10.1021/cm9015063

    11. [11]

      Zhang, H. X.; Wang, F.; Yang, H.; Tan, Y. X.; Zhang, J.; Bu, X. H. Interrupted zeolite LTA and ATN-type boron imidazolate frameworks. J. Am. Chem. Soc. 2011, 133, 11884–11887.  doi: 10.1021/ja2040927

    12. [12]

      Wang, F.; Shu, Y. B.; Bu, X. H.; Zhang, J. Zeolitic boron imidazolate frameworks with 4-connected octahedral metal centers. Chem. Eur. J. 2012, 18, 11876–11879.  doi: 10.1002/chem.201202377

    13. [13]

      Gao, C.; Wang, J.; Xu, H. X.; Xiong, Y. J. Coordination chemistry in the design of heterogeneous photocatalyst. Chem. Soc. Rev. 2017, 46, 2799–2823.  doi: 10.1039/C6CS00727A

    14. [14]

      Xu, G. L.; Zhang, H. B.; Wei, J.; Zhang, H. X.; Wu, X.; Li, Y.; Li, C. S.; Zhang, J.; Ye, J. H. Integrating the g-C3N4 nanosheet with B–H bonding decorated metal-organic framework for CO2 activation and photoreduction. ACS Nano. 2018, 12, 6, 5333–5340.

    15. [15]

      Wang, S. B.; Yao, W. S.; Lin, J. L.; Ding, Z. X.; Wang, X. C. Cobalt imidazolate metal-organic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem. Int. Ed. 2014, 53, 1034–1038.  doi: 10.1002/anie.201309426

    16. [16]

      Zhang, T.; Lin, W. B. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 2014, 43, 5982–5993.  doi: 10.1039/C4CS00103F

    17. [17]

      Wang, Y.; Huang, N. Y.; Shen, J. Q.; Liao, P. Q.; Chen, X. M.; Zhang, J. P. Hydroxide ligands cooperate with catalytic centers in metal-organic frameworks for efficient photocatalytic CO2 reduction. J. Am. Chem. Soc. 2017, 38–41.

    18. [18]

      Takeda, H.; Cometto, C.; Ishitani, O.; Robert, M. Photons, protons and earth-abundant metal complexes for molecular catalysis of CO2 reduction. ACS Catal. 2017, 7, 70–88.  doi: 10.1021/acscatal.6b02181

    19. [19]

      Liu, Q.; Low, Z. X.; Li, L.; Razmjou, A.; Wang, K.; Yao, J. F.; Wang, H. T. ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. J. Mater. Chem. A 2013, 1, 11563–11569.  doi: 10.1039/c3ta12433a

    20. [20]

      Wang, Y.; Zhang, Z. Z.; Li, C.; Zhang, L. N.; Luo, Z. B.; Shen, J. N.; Lin, H. X.; Long, J. L.; Wu, J. C. S.; Fu, X. Z.; Wang, X. X. Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@2D-MoS2 heterostructure. J. Am. Chem. Soc. 2018, 140, 14595–14598.  doi: 10.1021/jacs.8b09344

    21. [21]

      Zhou, M.; Wang, S. B.; Yang, P. J.; Huang, C. J.; Wang, X. C. Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2. ACS Catal. 2018, 8, 4928–4936.  doi: 10.1021/acscatal.8b00104

    22. [22]

      Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Ferey, G. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 2004, 10, 1373–1382.  doi: 10.1002/chem.200305413

    23. [23]

      Ma, L. F.; Wang, L. Y.; Hu, J. L.; Wang, Y. Y. Syntheses, structures, and photoluminescence of a series of d10 coordination polymers with R-isophthalate (R = -OH, -CH3, and -C(CH3)3). Cryst. Growth Des. 2009, 9, 5334–5342.  doi: 10.1021/cg900825y

    24. [24]

      Han, M. L.; Chang, X. H.; Feng, X.; Ma, L. F.; Wang, L. Y. Temperature and pH driven self-assembly of Zn(Ⅱ) coordination polymers: crystal structures, supramolecular isomerism, and photoluminescence. CrystEngComm. 2014, 16, 1687–1695.  doi: 10.1039/c3ce41968a

    25. [25]

      Zhang, L. Y.; Zhang, J. P.; Lin, Y. Y.; Chen, X. M. Syntheses, structures, and photoluminescence of three coordination polymers of cadmium dicarboxylates. Cryst. Growth Des. 2006, 6, 1684–1689.  doi: 10.1021/cg060194f

    26. [26]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howarda, J. A. K.; Puschmann, K. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341.  doi: 10.1107/S0021889808042726

    27. [27]

      Dolomanov, O. V.; Puschmann, H. Accurate hydrogen-atom positions from standard X-ray data: Hirshfeld atom refinement and Olex2. Acta Crystallogr A 2018, 74, e40–e40.

  • 加载中
    1. [1]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    2. [2]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    3. [3]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    4. [4]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    5. [5]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    6. [6]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    7. [7]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    10. [10]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    11. [11]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    12. [12]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    13. [13]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    14. [14]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    15. [15]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    16. [16]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    17. [17]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    18. [18]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(1)
  • Abstract views(194)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return