Citation: Yun LIU, Sheng-Ze YUAN, Kui XIE. Conversion of Methane to Ethylene with BaCe0.9Y0.1CoxO3 Hydrogen Permeation Membrane[J]. Chinese Journal of Structural Chemistry, ;2021, 40(7): 901-907. doi: 10.14102/j.cnki.0254-5861.2011-3055 shu

Conversion of Methane to Ethylene with BaCe0.9Y0.1CoxO3 Hydrogen Permeation Membrane

  • Corresponding author: Kui XIE, kxie@fjirsm.ac.cn
  • Received Date: 4 December 2020
    Accepted Date: 18 January 2021

    Fund Project: the National Key Research and Development Program of China 2017YFA0700102Natural Science Foundation of China 91845202Dalian National Laboratory for Clean Energy DNL180404Strategic Priority Research Program of Chinese Academy of Sciences XDB2000000

Figures(6)

  • Dehydrogenation coupling of methane (DCM), which can be effectively used to produce low carbon alkenes, has the advantages of rich raw materials, simple reaction device, low energy consumption, etc. Herein, we report a series of Co doped perovskite porous-dense BaCe0.9Y0.1CoxO3-δ (BCYCx) membrane for DCM. After treatment in a reduced atmosphere, a large number of Co nanoparticles will exsolute on the surface of BCY. The metal-oxide interface is helpful to activate the C–H bonds, inhibit the carbon deposition, and so on. The XRD, SEM and XPS prove that Co nanoparticles homogeneously distributed on the BCYCx porous layers, which will create a large quantity of catalytic active sites. At 1100 ℃, the highest concentration of C2 product was 5.66% (5.25% ethane + 0.41% ethylene) in output gas when methane conversion reaches a maximum value of 24.8%, and the C2 selectivity gets to 45.6%. We further demonstrate the catalytic performance of high-temperature DCM without obvious decrease after running for 30 hours.
  • 加载中
    1. [1]

      Ren, T.; Patel, M.; Blok, K. Olefins from conventional and heavy feedstocks: energy use in steam cracking and alternative processes. Energy 2006, 31, 425‒451.  doi: 10.1016/j.energy.2005.04.001

    2. [2]

      Lee, M. H.; Nagaraja, B. M.; Lee, K. Y.; Jung, K. D. Dehydrogenation of alkane to light olefin over PtSn/θ-Al2O3 catalyst: effects of Sn loading. Catal. Today 2014, 232, 53‒62.  doi: 10.1016/j.cattod.2013.10.011

    3. [3]

      Sattler, J. J.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B. M. Dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 2014, 114, 10613‒10653.  doi: 10.1021/cr5002436

    4. [4]

      Lange, J. P. Methanol synthesis: a short review of technology improvements. Catal. Today 2001, 64, 3‒8.  doi: 10.1016/S0920-5861(00)00503-4

    5. [5]

      Xu, S. T.; Zheng, A. M.; Wei, Y. X.; Chen, J. R.; Li, J. Z.; Chu, Y. Y.; Zhang, M. Z.; Wang, Q. Y.; Zhou, Y.; Wang, J. B.; Deng, F.; Liu, Z. M. Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites. Angew. Chem. Int. Ed. 2013, 52, 11564‒11568.  doi: 10.1002/anie.201303586

    6. [6]

      Tian, P.; Wei, Y. X.; Ye, M.; Liu, Z. M. Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal. 2015, 5, 1922‒1938.  doi: 10.1021/acscatal.5b00007

    7. [7]

      Li, L. P.; Chen, Y. Y.; Xu, S. T.; Li, J. F.; Dong, M.; Liu, Z. W.; Jiao, H. J.; Wang, J. G.; Fan, W. B. Oriented control of Al locations in the framework of Al–Ge–ITQ-13 for catalyzing methanol conversion to propene. J. Catal. 2016, 344, 242‒251.  doi: 10.1016/j.jcat.2016.09.007

    8. [8]

      Zhao, X. B.; Wang, L. Y.; Li, J. Z.; Xu, S. T.; Zhang, W. N.; Wei, Y. X.; Guo, X. W.; Tian, P.; Liu, Z. M. Investigation of methanol conversion over high-Si beta zeolites and the reaction mechanism of their high propene selectivity. Catal. Sci. Tech. 2017, 7, 5882‒5892.  doi: 10.1039/C7CY01804E

    9. [9]

      Cheng, K.; Gu, B.; Liu, X. L.; Kang, J. C.; Zhang, Q. H.; Wang, Y. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling. Angew. Chem. Int. Ed. 2016, 55, 4725‒4728.  doi: 10.1002/anie.201601208

    10. [10]

      Cheng, K.; Ordomsky, V. V.; Virginie, M.; Legras, B.; Chernavskii, P. A.; Kazak, V. O.; Cordier, C.; Paul, S.; Wang, Y.; Khodakov, A. Y. Support effects in high temperature Fischer-Tropsch synthesis on iron catalysts. Appl. Catal. A: Gen. 2014, 488, 66‒77.  doi: 10.1016/j.apcata.2014.09.033

    11. [11]

      Zhu, C. L.; Hou, S. S.; Hu, X. L.; Lu, J. H.; Chen, F. L.; Xie, K. Electrochemical conversion of methane to ethylene in a solid oxide electrolyzer. Nat. Commun. 2019, 10, 1173‒8.  doi: 10.1038/s41467-019-09083-3

    12. [12]

      Bajec, D.; Kostyniuk, A.; Pohar, A.; Likozar, B. Department of nonoxidative methane activation, coupling, and conversion to ethane, ethylene, and hydrogen over Fe/HZSM-5, Mo/HZSM-5, and Fe-Mo/HZSM-5 catalysts in packed bed reactor. Int. J. Energy Res. 2019, 43, 6852‒6868.

    13. [13]

      Schwach, P.; Hamilyon, N.; Eichelbaum, M.; Thum, L.; Lunkenbein, T.; Schlögl, R.; Trunschke, A. Structure sensitivity of the oxidative activation of methane over MgO model catalysts: II. Nature of active sites and reaction mechanism. J. Catal. 2015, 329, 574‒587.  doi: 10.1016/j.jcat.2015.05.008

    14. [14]

      Noon, D.; Seubsai, A.; Senkan, S. Oxidative coupling of methane by nanofiber catalysts. ChemCatChem. 2013, 5, 146−149.  doi: 10.1002/cctc.201200408

    15. [15]

      Guo, X. G.; Fang, G. Z.; Li, G.; Ma, H.; Fan, H. J.; Yu, L.; Ma, C.; Wu, X.; Deng, D. H.; Wei, M. M.; Tan, D. L.; Si, R.; Zhang, S.; Li, J. Q.; Sun, L. T.; Tang, Z. C.; Pan, X. L.; Bao, X. H. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 2014, 344, 616−619.  doi: 10.1126/science.1253150

    16. [16]

      Norby, T. Solid-state protonic conductors: principles, properties, progress and prospects. Solid State Ionics 1999, 125, 1−11.  doi: 10.1016/S0167-2738(99)00152-6

    17. [17]

      Katahira, K.; Kohchi, Y.; Shimura, T.; Iwahara, H. Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics 2000, 138, 91−98.  doi: 10.1016/S0167-2738(00)00777-3

    18. [18]

      Chiang, P. H.; Eng, D.; Stoukides, M. Electrocatalytic nonoxidative dimerization of methane over Ag electrodes. Solid State Ionics 1993, 61, 99−103.  doi: 10.1016/0167-2738(93)90340-9

    19. [19]

      Chiang, P. H.; Eng, D.; Tsiakaras, P.; Stoukides, M. Ion transport and polarization studies in a proton conducting solid electrolyte cell. Solid State Ionics 1995, 77, 305−310.  doi: 10.1016/0167-2738(94)00255-Q

    20. [20]

      Sakbodin, M.; Wu, Y. Q.; Oh, S. C.; Wachsman, E. D.; Liu, D. X. Hydrogen-permeable tubular membrane reactor: promoting conversion and product selectivity for non-oxidative activation of methane over an Fe©SiO2 catalyst. Angew. Chem. Int. Ed. 2016, 55, 16149−16152.  doi: 10.1002/anie.201609991

    21. [21]

      Danilov, N.; Lyagaeva, J.; Kasyanova, A.; Vdovin, G.; Medvedev, D.; Demin, A.; Tsiakaras, P. The effect of oxygen and water vapor partial pressures on the total conductivity of BaCe0.7Zr0.1Y0.2O3–δ. Ionics 2017, 23, 795−801.  doi: 10.1007/s11581-016-1961-1

    22. [22]

      Islam, Q. A.; Raja, M. W.; Basu, R. N. Zr- and Tb-doped barium cerate-based cermet membrane for hydrogen separation application. J. Am. Ceram. Soc. 2017, 100, 1360−1367.  doi: 10.1111/jace.14737

    23. [23]

      Lin, Y. S. Microporous and dense inorganic membranes: current status and prospective. Sep. Purif. Technol. 2001, 25, 39−55.  doi: 10.1016/S1383-5866(01)00089-2

    24. [24]

      Guan, J.; Dorris, S. E.; Balanehandran, U.; Liu, M. Transport properties of BaCe0.95Y0.05O3-α mixed conductors for hydrogen separation. Solid State Ionics 1997, 100, 45−52.  doi: 10.1016/S0167-2738(97)00320-2

    25. [25]

      Ma, G. L.; Shimura, T.; Iwahara, H. Ionic conduction and nonstoichiometry in BaCe0.9Y0.1O3-α. Solid State Ionics 1998, 110, 103−110.  doi: 10.1016/S0167-2738(98)00130-1

    26. [26]

      Zhang, X. R.; Ye, L. T.; Li, H.; Chen, F. L.; Xie, K. Electrochemical dehydrogenation of ethane to ethylene in a solid oxide electrolyzer. ACS Catal. 2020, 10, 3505−3513.  doi: 10.1021/acscatal.9b05409

    27. [27]

      Chen, L.; Liu, L. F.; Xue, J.; Zhuang, L. B.; Wang, H. H. Asymmetric membrane structure: an efficient approach to enhance hydrogen separation performance. Sep. Purif. Technol. 2018, 207, 363−369.  doi: 10.1016/j.seppur.2018.06.066

    28. [28]

      Chen, Y.; Wei, Y. Y.; Zhuang, L. B.; Xie, H. Q.; Wang, H. H. Effect of Pt layer on the hydrogen permeation property of La5.5W0.45Nb0.15Mo0.4O11.25-δ membrane. J. Membr. Sci. 2018, 552, 61−67.  doi: 10.1016/j.memsci.2018.01.068

    29. [29]

      Majumdar, D.; Spahn, R. G.; Gau, J. S. X-ray photoelectron spectroscopy studies on the oxidation behavior of CoNi thin films. J. Electrochem. Soc. 1987, 134, 1825−1829.  doi: 10.1149/1.2100765

    30. [30]

      Zhang, Q. Y.; Han, J. J.; Huang, Y.; Chen, Y.; Yan, X.; Lang, W. Z. Effect of Ba non-stoichiometry in Ba1-xZr0.1Ce0.7Y0.2O3-δ on its structure defect, sinterability and hydrogen permeability. Ceram. Int. 2020, 46, 19564−19573.  doi: 10.1016/j.ceramint.2020.05.012

  • 加载中
    1. [1]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    2. [2]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    3. [3]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    4. [4]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    5. [5]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    6. [6]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    7. [7]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    8. [8]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    9. [9]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    10. [10]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    11. [11]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    12. [12]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    13. [13]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    14. [14]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    15. [15]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    16. [16]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    17. [17]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    18. [18]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    19. [19]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    20. [20]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

Metrics
  • PDF Downloads(1)
  • Abstract views(235)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return