Citation: Chong ZHAO, Wang-Gui YE, Ying-Kui LI, Xiao-Fei SHEN, Zhi-Jun CAO, Zhi-Quan CAO, Zi-Cheng WEN, Xuan-Yi YUAN, Chao-Yang MA, Yong-Ge CAO. Electromagnetic Properties of YIG Polycrystalline Ceramics Fabricated by Tape-casting Method[J]. Chinese Journal of Structural Chemistry, ;2021, 40(7): 892-900. doi: 10.14102/j.cnki.0254-5861.2011-3034 shu

Electromagnetic Properties of YIG Polycrystalline Ceramics Fabricated by Tape-casting Method

  • Corresponding author: Chao-Yang MA, machaoyang@sslab.org.cn Yong-Ge CAO, caoyongge@sslab.org.cn
  • Received Date: 9 November 2020
    Accepted Date: 27 January 2021

    Fund Project: the National Key R & D Program of China 2017YFB0403200the National Natural Science Foundation of China 51872327

Figures(7)

  • Pure phase Y3Fe5O12 (YIG) ceramic was successfully produced by tape-casting forming process and one-step solid-state sintering method. The activation energy for densification was calculated to be 183.81 kJ/mol. Pure YIG ceramic with a relative density as high as 99.8% was fabricated. The existence of O vacancy and Fe2+ ions was determined by XPS and EPR spectra. The RT saturation magnetization was measured to be 28.2 emu/g, and the hysteresis loss was calculated to be smaller than 10 mJ/kg in the temperature range of 230~360 K and be as high as 238.8 mJ/kg at 30 K. The dielectric loss tangent tan\begin{document}$ {\delta }_{\varepsilon } $\end{document} was nearly zero at 6~7 GHz and 11~12 GHz. For complex permeability in the frequency range of 5~18 GHz, the magnetic loss tangent tan\begin{document}$ {\delta }_{\mu } $\end{document} fluctuated at around zero. Therefore, the low values of tan\begin{document}$ {\delta }_{\varepsilon } $\end{document} and tan\begin{document}$ {\delta }_{\mu } $\end{document} indicate that it is a low loss ceramic material.
  • 加载中
    1. [1]

      Badahur, D. Current trends in applications of magnetic ceramic materials. B. Mater. Sci. 1992, 15, 431−439.  doi: 10.1007/BF02745292

    2. [2]

      Adam, J. D.; Davis, L. E.; Dionne, G. F.; Schloemann, E. F.; Stitzer, S. N. Ferrite devices and materials. IEEE T. Microw. Theory 2002, 50, 721−737.  doi: 10.1109/22.989957

    3. [3]

      Nan, C.; Bichurin, M. I.; Dong, S.; Viehland, D.; Srinivasan, G. Multiferroic magnetoelectric composites: historical perspective, status and future directions. J. App. Phys. 2008, 103, 031101−35.  doi: 10.1063/1.2836410

    4. [4]

      Huang, M.; Zhang, S. Y. Growth and characterization of rare-earth iron garnet single crystals modified by bismuth and ytterbium substituted for yttrium. J. Mater. Chem. Phys. 2002, 73, 314−317.  doi: 10.1016/S0254-0584(01)00365-0

    5. [5]

      Huang, M.; Xu, Z. C. Liquid phase epitaxy growth of bismuth-substituted yttrium iron garnet thin films for magneto-optical applications. Thin Solid Films 2004, 450, 324−328.  doi: 10.1016/j.tsf.2003.11.190

    6. [6]

      Deschanvres, J. L.; Langlet, M.; Bochu, B.; Joubert, J. C. Growth of Bi-substituted YIG thin films for magneto-optic applications. J. Magn. Magn. Mater. 1991, 101, 224−226.  doi: 10.1016/0304-8853(91)90737-U

    7. [7]

      Kimzuka, N.; Katsura, T. Standard free energy of formation of YFeO3, Y3Fe5O12 and a new compound YFe2O4 in the Fe2O3-Y2O3 system at 1200 ℃. J. Solid State Chem. 1975, 13, 176−181.  doi: 10.1016/0022-4596(75)90116-4

    8. [8]

      Sánchez-De Jesús, F.; Cortés, C. A.; Valenzuela, R.; Ammar, S.; Bolarín-Miró, A. M.; Bolarin-Miro, M. Synthesis of Y3Fe5O12 (YIG) assisted by high-energy ball milling. Ceram. Int. 2012, 38, 5257−5263.  doi: 10.1016/j.ceramint.2012.03.036

    9. [9]

      Ali, W. F. F. W.; Othman, M.; Ain, M. F.; Abdullah, N. S.; Ahmad, Z. A. The investigation of the phenomenological YIG phase formation within 1000 ℃ to 1250 ℃: a kinetic approach. J. Am. Ceram. Soc. 2015, 99, 315−323.

    10. [10]

      Buscaglia, V.; Caracciolo, F.; Bottino, C.; Leoni, M.; Nanni, P. Reaction diffusion in the Fe2O3-Y2O3 system. Acta Mater. 1997, 45, 1213−1224.  doi: 10.1016/S1359-6454(96)00246-7

    11. [11]

      Sztaniszláv, A.; Sterk, E.; Fetter, L.; Farkas-Jahnke, M.; Lábár, J. Investigation of garnet formation by sintering of Y2O3 and Fe2O3. J. Magn. Magn. Mater. 1984, 41, 75−78.  doi: 10.1016/0304-8853(84)90141-0

    12. [12]

      Ali, W. F. F. W.; Othman, M.; Ain, M. F.; Abdullah, N. S.; Ahmad, Z. A. The behavior of high frequency tunable dielectric resonator antenna (DRA) with the addition of excess Fe2O3 in Y3Fe5O12 (YIG) formulation. J. Mater. Sci-Mater. El. 2014, 25, 560−572.  doi: 10.1007/s10854-013-1624-1

    13. [13]

      Ali, W. F. F. W.; Othman, M.; Ain, M. F.; Abdullah, N. S.; Ahmad, Z. A. Studies on the formation of yttrium iron garnet (YIG) through stoichiometry modification prepared by conventional solid-state method. J. Eur. Ceram. Soc. 2013, 33, 1317−1324.  doi: 10.1016/j.jeurceramsoc.2012.12.016

    14. [14]

      Li, X.; Zhou, J.; Deng, J.; Zheng, H.; Zheng, L.; Zheng, P.; Qin, H. Synthesis of dense, fine-grained YIG ceramic by two-step sintering. J. Electron. Mater. 2016, 45, 4973−4978.  doi: 10.1007/s11664-016-4690-3

    15. [15]

      Chen, F.; Li, Q.; Wang, X.; Ouyang, J.; Nie, Y.; Feng, Z.; Gong, R.; Chen, Y.; Harris, V. G. Crystal structure tailored microwave magnetodielectric in YbxY3-xFe5O12 ceramic. J. Alloy. Compd. 2017, 726, 1030−1039.  doi: 10.1016/j.jallcom.2017.08.040

    16. [16]

      Lide, D. R. Vapor Pressure of the Metallic Elements. CRC Handbook of Chemistry and Physics. 84th Edition, online version. CRC Press. Boca Raton, Florida 2003, p309−313

    17. [17]

      Ali, W. F. F. W.; Othman, M.; Ain, M. F.; Abdullah, N. S.; Ahmad, Z. A. Sintering and grain growth control of high dense YIG. Ceram. Int. 2016, 42, 13996−14005.  doi: 10.1016/j.ceramint.2016.06.004

    18. [18]

      Fechine, P. B. A.; Silva, E. N.; Menezes, A. S.; Derov, J.; Stewart, J. W.; Drehman, A. J.; Vasconcelos, I. F.; Ayala, A. P.; Cardoso, L. P.; Sombra, A. S. B. Synthesis, structure and vibrational properties of GdIGx: YIG1-x ferrimagnetic ceramic composite. J. Phys. Chem. Sol. 2009, 70, 202−209.  doi: 10.1016/j.jpcs.2008.10.008

    19. [19]

      Wu, H.; Liu, J.; Liang, H.; Zang, D. Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption. Chem. Eng. J. 2020, 393, 124743-1−13.
       

    20. [20]

      Zou, J.; Wang, Z.; Yan, M.; Bi, H. Enhanced interfacial polarization relaxation effect on microwave absorption properties of submicron-sized hollow Fe3O4 hemispheres. J. Phys. D: Appl. Phys. 2014, 47, 275001−9.  doi: 10.1088/0022-3727/47/27/275001

    21. [21]

      Lan, D.; Qin, M.; Yang, R.; Chen, S.; Wu, H.; Fan, Y.; Fu, Q.; Zhang, F. Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J. Colloid Interface Sci. 2019, 533, 481−491.  doi: 10.1016/j.jcis.2018.08.108

  • 加载中
    1. [1]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    2. [2]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    3. [3]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

Metrics
  • PDF Downloads(1)
  • Abstract views(187)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return