Citation: Yun-Xia SONG, Min LUO, Ning YE. Ultraviolet Nonlinear Optical Crystals in π-Conjugated System[J]. Chinese Journal of Structural Chemistry, ;2020, 39(12): 2148-2156. doi: 10.14102/j.cnki.0254-5861.2011-3028 shu

Ultraviolet Nonlinear Optical Crystals in π-Conjugated System

  • Corresponding author: Ning YE, nye@fjirsm.ac.cn
  • Received Date: 3 November 2020
    Accepted Date: 28 November 2020

    Fund Project: the National Natural Science Foundation of China 21975255the National Natural Science Foundation of China 51890862the National Natural Science Foundation of China 21921001the National Natural Science Foundation of China U1605245the National Key Research and Development Plan of Ministry of Science and Technology 2016YFB0402104the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000

Figures(6)

  • UV nonlinear optical (NLO) crystals are essential materials for UV solid state laser output. To date, frequency conversion in UV region is mainly dependent on borates with planar BO3 or B3O6 units. Since the practical applications require more and more high comprehensive properties of crystals, it is urgent to develop new UV NLO crystals. However, it is more and more difficult to find new borate NLO crystals because borate NLO crystals have been studied for several decades. Therefore, it is important to search new systems for the exploration of UV NLO crystals. Based on the relationship between the microstructure and properties of the groups, we proposed that inorganic (CO3)2- and (NO3)- groups can be as new NLO active units for UV NLO crystals because they have π-conjugated configuration. Accordingly, our group have performed related work in carbonate and nitrate systems in recent years, which resulted in finding some excellent carbonates and nitrates NLO crystals. In addition, we have recently expanded the research field from inorganic to organic π-conjugated systems, such as isocyanurates. This mini review will introduce the research results of our team in the field of UV NLO crystals including carbonates, nitrates and cyanurates in recent years.
  • 加载中
    1. [1]

      Dong, X.; Huang, L.; Hu, C.; Zeng, H.; Lin, Z.; Wang, X.; Ok, K. M.; Zou, G. CsSbF2SO4: an excellent ultraviolet nonlinear optical sulfate with a KTiOPO4 (KTP)-type structure. Angew. Chem. Int. Ed. 2019, 58, 6528−6534.  doi: 10.1002/anie.201900637

    2. [2]

      Luo, M.; Song, Y.; Liang, F.; Ye, N.; Lin, Z. Pb2BO3Br: a novel nonlinear optical lead borate bromine with a KBBF-type structure exhibiting strong nonlinear optical response. Inorg. Chem. Front. 2018, 5, 916−921.  doi: 10.1039/C8QI00026C

    3. [3]

      Luo, M.; Liang, F.; Song, Y.; Zhao, D.; Ye, N.; Lin, Z. Rational design of the first lead/tin fluorooxoborates MB2O3F2 (M = Pb, Sn), containing flexible two-dimensional [B6O12F6] single layers with widely divergent second harmonic generation effects. J. Am. Chem. Soc. 2018, 140, 6814−6817.  doi: 10.1021/jacs.8b04333

    4. [4]

      Luo, M.; Liang, F.; Song, Y.; Zhao, D.; Xu, F.; Ye, N.; Lin, Z. M2B10O14F6 (M = Ca, Sr): two noncentrosymmetric alkaline earth fluorooxoborates as promising next-generation deep-ultraviolet nonlinear optical materials. J. Am. Chem. Soc. 2018, 140, 3884−3887.  doi: 10.1021/jacs.8b01263

    5. [5]

      Zou, G.; Jo, H.; Lim, S. J.; You, T. S.; Ok, K. M. Rb3VO(O2)2CO3: a four-in-one carbonatoperoxovanadate exhibiting an extremely strong second-harmonic generation response. Angew. Chem. Int. Ed. 2018, 57, 8619−8622.  doi: 10.1002/anie.201804354

    6. [6]

      Mutailipu, M.; Pan, S. Emergent deep-ultraviolet nonlinear optical candidates. Angew. Chem. Int. Ed. 2020, 59, 20302−20317.  doi: 10.1002/anie.201913974

    7. [7]

      Chen, C.; Wu, B.; Jiang, A.; You, G. A new-type ultraviolet SHG crystal β-BaB2O4. Sci. Sinica Ser. B 1985, 7, 235−243.

    8. [8]

      Tu, J. M.; Keszler, D. A. CsLiB6O10: a noncentrosymmetric polyborate. Mater. Res. Bull. 1995, 30, 209−215.  doi: 10.1016/0025-5408(94)00121-9

    9. [9]

      Zaitseva, N. P.; De Yoreo, J. J.; Dehaven, M. R.; Vital, R. L.; Montgomery, K. E.; Richardson, M.; Atherton, L. J. Rapid growth of large-scale (40~55 cm) KH2PO4 crystals. J. Cryst. Growth 1997, 180, 255−262.  doi: 10.1016/S0022-0248(97)00223-6

    10. [10]

      Furusawa, S. I.; Chikagawa, O.; Tange, S.; Ishidate, T.; Orihara, H.; Ishibashi, Y.; Miwa, K. Second harmonic generation in Li2B4O7. J. Phys. Soc. Jpn. 1991, 60, 2691−2693.  doi: 10.1143/JPSJ.60.2691

    11. [11]

      Hu, Z.; Higashiyama, T.; Yoshimura, M.; Yap, Y. K.; Mori, Y.; Sasaki, T. A new nonlinear optical borate crystal K2Al2B2O7 (KAB). Jpn. J. Appl. Phys. Part 2-Lett. 1998, 37, L1093−L1094.  doi: 10.1143/JJAP.37.L1093

    12. [12]

      Chen, C.; Liu, G. Recent advances in nonlinear optical and electro-optical materials. Annu. Rev. Mater. Res. 1986, 16, 203−243.  doi: 10.1146/annurev.ms.16.080186.001223

    13. [13]

      Chen, C.; Wu, Y.; Li, R. The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series. Int. Rev. Phys. Chem. 1989, 8, 65−91.  doi: 10.1080/01442358909353223

    14. [14]

      Günther, W.; Paulus, W.; Schöllhorn, R. Stacking disorder in a layered carbonate phase: the structure of LaKOCO3. J. Phys. Chem. Solids 2000, 61, 1945−1953.  doi: 10.1016/S0022-3697(00)00085-8

    15. [15]

      Zhukov, S. G.; Yatsenko, A. V.; Chernyshev, V. V.; D'Yakov, V. A.; Loux, R. L.; Schenk, H. X-ray high temperature powder diffraction study and computer simulation of γ-LiNaCO3. Z. Kristallogr. 1999, 214, 255−258.

    16. [16]

      Ali, A. B.; Maisonneuve, V.; Houlbert, S.; Silly, G.; Buzare, J. Y.; Leblanc, M. Cation and anion disorder in new cubic rare earth carbonates Na2LiLn(CO3)3 (Ln = Eu-Er, Yb, Lu, Y); synthesis, crystal structures, IR, Raman and NMR characterizations. Solid State Sci. 2005, 36, 1237−1243.

    17. [17]

      King, J. W. Hydrothermal synthesis, crystal structure, thermal behaviour, IR and Raman spectroscopy of Na3Y(CO3)36H2O. C. R. Chim. 2004, 7, 661−668.  doi: 10.1016/j.crci.2004.03.007

    18. [18]

      Mercier, N.; le Blanc, M.; Durand, J. New frequency doubling compounds: K4Ln2(CO3)3F4 (Ln = Pr, Nd, Sm, Gd, Eu); crystal structure and characterization. Eur. J. Solid State Inorg. Chem. 1997, 34, 241−249.

    19. [19]

      Albert, B.; Arlt, J.; Jansen, M.; Erhardt, H. Floridcarbonate der alkalimetalle. Z. Anorg. Allg. Chem. 1992, 607, 13−18.  doi: 10.1002/zaac.19926070104

    20. [20]

      Ben, A.; Maisonneuve, V.; Smiri, L. S.; Leblanc, M. Synthesis and crystal structure of BaZn(CO3)F2; revision of the structure of BaMn(CO3)F2. Solid State Sci. 2002, 4, 891−894.  doi: 10.1016/S1293-2558(02)01339-0

    21. [21]

      D'Yakov, A. V. A.; Laptinskaya, T. V.; Pryalkin, V. I. Optical and nonlinear optical properties of LiNaCO3 single crystals. Phosphorus Res. Bull. 2001, 12, 117−122.  doi: 10.3363/prb1992.12.0_117

    22. [22]

      Zou, G.; Ye, N.; Huang, L.; Lin, X. Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials. J. Am. Chem. Soc. 2011, 133, 20001−20007.  doi: 10.1021/ja209276a

    23. [23]

      Luo, M.; Ye, N.; Zou, G.; Lin, C.; Cheng, W. Na8Lu2(CO3)6F2 and Na3Lu(CO3)2F2: rare earth fluoride carbonates as deep-UV nonlinear optical materials. Chem. Mater. 2013, 25, 3147−3153.  doi: 10.1021/cm4023369

    24. [24]

      Cao, L.; Song, Y.; Peng, G.; Luo, M.; Yang, Y.; Lin, C.; Zhao, D.; Xu, F.; Lin, Z.; Ye, N. Refractive index modulates second-harmonic responses in RE8O(CO3)3(OH)15X (RE = Y, Lu; X = Cl, Br): rare-earth halide carbonates as ultraviolet nonlinear optical materials. Chem. Mater. 2019, 31, 2130−2137.  doi: 10.1021/acs.chemmater.9b00068

    25. [25]

      Luo, M.; Lin, C.; Zou, G.; Ye, N.; Cheng, W. Sodium-rare earth carbonates with shorite structure and large second harmonic generation response. CrystEngComm. 2014, 16, 4414−4421.  doi: 10.1039/c4ce00183d

    26. [26]

      Luo, M.; Wang, G.; Lin, C.; Ye, N.; Zhou, Y.; Cheng, W. Na4La2(CO3)5 and CsNa5Ca5(CO3)8: two new carbonates as UV nonlinear optical materials. Inorg. Chem. 2014, 53, 8098−8104.  doi: 10.1021/ic501089f

    27. [27]

      Chen, Q.; Luo, M.; Lin, C. Synthesis, characterization and property of a new UV nonlinear optical crystal KNa5Ca5(CO3)8. J. Inorg. Mater. 2018, 33, 667−672.  doi: 10.15541/jim20170335

    28. [28]

      Chen, Q.; Luo, M. Synthesis, crystal structure, and nonlinear optical properties of a new alkali and alkaline earth metal carbonate RbNa5Ca5(CO3)8. Crystals 2017, 7, 10−9.

    29. [29]

      Song, Y.; Luo, M.; Zhao, D.; Peng, G.; Lin, C.; Ye, N. Explorations of new UV nonlinear optical materials in the Na2CO3-CaCO3 system. J. Mater. Chem. C 2017, 5, 8758−8764.  doi: 10.1039/C7TC02789C

    30. [30]

      Luo, M.; Song, Y.; Lin, C.; Ye, N.; Cheng, W.; Long, X. Molecular engineering as an approach to design a new beryllium-free fluoride carbonate as a deep-ultraviolet nonlinear optical material. Chem. Mater. 2016, 28, 2301−2307.  doi: 10.1021/acs.chemmater.6b00360

    31. [31]

      Li, R. Exploration Research on Inorganic UV Nonlinear Optical Crystal. Fujian Institute of Research on the Structure of Matter 1988, p10−20.

    32. [32]

      Wang, G.; Luo, M.; Lin, C.; Ye, N.; Zhou, Y.; Cheng, W. Lanthanum lead oxide hydroxide nitrates with a nonlinear optical effect. Inorg. Chem. 2014, 53, 12584−12589.  doi: 10.1021/ic502202a

    33. [33]

      Wang, G.; Luo, M.; Ye, N.; Lin, C.; Cheng, W. Series of lead oxide hydroxide nitrates obtained by adjusting the pH values of the reaction systems. Inorg. Chem. 2014, 53, 5222−5228.  doi: 10.1021/ic5004116

    34. [34]

      Song, Y.; Luo, M.; Lin, C.; Ye, N. Structural modulation of nitrate group with cations to affect SHG responses in RE(OH)2NO3 (RE = La, Y, and Gd): new polar materials with large NLO effect after adjusting pH values of reaction systems. Chem. Mater. 2017, 29, 896−903.  doi: 10.1021/acs.chemmater.6b05119

    35. [35]

      Seifer, G. B. Cyanuric acid and cyanurates. Russ. J. Coord. Chem. 2002, 28, 301−324.  doi: 10.1023/A:1015531315785

    36. [36]

      Müller, U. Die kristallstruktur von antimontetrachlorid-cyanurat [SbCl4NCO]3. Z. Anorg. Allg. Chem. 1976, 422, 141−148.  doi: 10.1002/zaac.19764220206

    37. [37]

      Kalmutzki, M.; Ströbele, M.; Wackenhut, F.; Meixner, A. J.; Meyer, H. J. Synthesis, structure, and frequency-doubling effect of calcium cyanurate. Angew. Chem. Int. Ed. 2014, 53, 14260−14263.  doi: 10.1002/anie.201407708

    38. [38]

      Kalmutzki, M.; Ströbele, M.; Bettinger, H. F.; Meyer, H. J. Development of metal cyanurates: the example of barium cyanurate (BCY). Eur. J. Inorg. Chem. 2014, 15, 2536−2543.

    39. [39]

      Kalmutzki, M.; Ströbele, M.; Wackenhut, F.; Meixner, A. J.; Meyer, H. J. Synthesis and SHG properties of two new cyanurates: Sr3(O3C3N3)2 (SCY) and Eu3(O3C3N3)2 (ECY). Inorg. Chem. 2014, 53, 12540−12545.  doi: 10.1021/ic502035b

    40. [40]

      Kalmutzki, M.; Ströbele, M.; Meyer, H. J. From cyanate to cyanurate: cyclotrimerization reactions towards the novel family of metal cyanurates. Dalton T 2013, 42, 129341−2939.

    41. [41]

      Dolabdjian, K.; Ströbele, M.; Meyer, H. J. Crystal structure of a commercial product called lead cyanurate. Z. Anorg. Allg. Chem. 2015, 641, 765−768.  doi: 10.1002/zaac.201500103

    42. [42]

      Liang, F.; Kang, L.; Zhang, X.; Lee, M. H.; Lin, Z.; Wu, Y. Molecular construction using (C3N3O3)3– anions: analysis and prospect for inorganic metal cyanurates nonlinear optical materials. Cryst. Growth Des. 2017, 17, 4015−4020.  doi: 10.1021/acs.cgd.7b00677

    43. [43]

      Song, Y.; Lin, D.; Luo, M.; Lin, C.; Chen, Q.; Ye, N. RbNa(HC3N3O3)·2H2O exhibiting a strong second harmonic generation response and large birefringence as a new potential UV nonlinear optical material. Inorg. Chem. Front. 2020, 7, 150−156.  doi: 10.1039/C9QI01198F

    44. [44]

      Lin, D.; Luo, M.; Lin, C.; Xu, F.; Ye, N. KLi(HC3N3O3)·2H2O: solvent-drop grinding method toward the hydro-isocyanurate nonlinear optical crystal. J. Am. Chem. Soc. 2019, 141, 3390−3394.  doi: 10.1021/jacs.8b13280

  • 加载中
    1. [1]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    2. [2]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    3. [3]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    4. [4]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    5. [5]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    6. [6]

      Jindong HaoYufen LvShuyue TianChao MaWenxiu CuiHuilan YueWei WeiDong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513

    7. [7]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    8. [8]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    9. [9]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    10. [10]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    11. [11]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    12. [12]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    13. [13]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    14. [14]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    15. [15]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    16. [16]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    17. [17]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    18. [18]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    19. [19]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    20. [20]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

Metrics
  • PDF Downloads(5)
  • Abstract views(366)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return