Citation: Jun-Hao TANG, Hai-Yan SUN, Wen MA, Mei-Ling FENG, Xiao-Ying HUANG. Recent Progress in Developing Crystalline Ion Exchange Materials for the Removal of Radioactive Ions[J]. Chinese Journal of Structural Chemistry, ;2020, 39(12): 2157-2171. doi: 10.14102/j.cnki.0254-5861.2011-3018 shu

Recent Progress in Developing Crystalline Ion Exchange Materials for the Removal of Radioactive Ions

  • Corresponding author: Mei-Ling FENG, fml@fjirsm.ac.cn
  • Received Date: 2 November 2020
    Accepted Date: 16 November 2020

    Fund Project: the National Natural Science Foundation of China 22076185the National Natural Science Foundation of China 21771183the National Natural Science Foundation of China 21373223the National Natural Science Foundation of China 21221001the National Natural Science Foundation of China 21171164the National Natural Science Foundation of China 20873149the National Natural Science Foundation of China 20771102the 973 programs 2014CB845603the 973 programs 2012CB821702the 973 programs 2006CB932904the Natural Science Foundation of Fujian Province 2020J06033the Natural Science Foundation of Fujian Province 2018J01027the Natural Science Foundation of Fujian Province 2010J01056FJIRSM & IUE Joint Research Fund RHZX-2018-005Chunmiao project of Haixi institute of Chinese Academy of Sciences CMZX-2014-001the Youth Innovation Promotion Association of Chinese Academy of Sciences 2011220

Figures(10)

  • The nuclear fuel cycle inevitably generates a large amount of radioactive waste liquid, which will pose a serious threat to the ecological environment and human health. Ion exchange method has received wide attention for its easy operation, low cost and no secondary pollution. However, the effective removal of radioactive ions from complex solutions still remains a serious challenge due to their environmental mobility and radiotoxicity. We have developed an efficient strategy to construct crystalline ion-exchange materials by inducing layered or three-dimensional microporous anionic frameworks by organic cations that can be effectively exchanged by radioactive metal ions. This type of materials can be applied effectively to the removal of radioactive ions from complex solutions and the removal mechanism has been deeply clarified by means of single crystal structure analyses, theoretical calculations, etc. This review summarizes our recent progress in the study of synthesis, structures and properties of radioactive ion removals for such type of crystalline ion-exchange materials.
  • 加载中
    1. [1]

      Shozugawa, K.; Nogawa, N.; Matsuo, M. Deposition of fission and activation products after the Fukushima Dai-ichi nuclear power plant accident. Environ. Pollut. 2012, 163, 243–247.  doi: 10.1016/j.envpol.2012.01.001

    2. [2]

      Mohammed, A. A.; Moamen, O. A. A.; Metwally, S. S.; El-Kamash, A. M.; Ashour, I.; Al-Geundi, M. S. Utilization of modified attapulgite for the removal of Sr(Ⅱ), Co(Ⅱ), and Ni(Ⅱ) ions from multicomponent system, part I: kinetic studies. Environ. Sci. Pollut. Res. 2020, 27, 6824–6836.  doi: 10.1007/s11356-019-07292-3

    3. [3]

      Naskar, N.; Banerjee, K. Development of sustainable extraction method for long-lived radioisotopes, 133Ba and 134Cs using a potential bio-sorbent. J. Radioanal. Nucl. Chem. 2020, 325, 587–593.  doi: 10.1007/s10967-020-07241-2

    4. [4]

      Noh, Y. D.; Komarneni, S.; Mackenzie, K. J. D. Titanosilicates: giant exchange capacity and selectivity for Sr and Ba. Sep. Purif. Technol. 2012, 95, 222–226.  doi: 10.1016/j.seppur.2012.05.013

    5. [5]

      Anspaugh, L. R.; Catlin, R. J.; Goldman, M. The global impact of the chernobyl reactor accident. Science 1988, 242, 1513–1519.  doi: 10.1126/science.3201240

    6. [6]

      Ivanov, Y. A.; Lewyckyj, N.; Levchuk, S. E.; Prister, B. S.; Firsakova, S. K.; Arkhipov, N. P.; Arkhipov, A. N.; Kruglov, S. V.; Alexakhin, R. M.; Sandalls, J.; Askbrant, S. Migration of 137Cs and 90Sr from Chernobyl fallout in Ukrainian, Belarussian and Russian soils. J. Environ. Radioact. 1997, 35, 1–21.  doi: 10.1016/S0265-931X(96)00036-7

    7. [7]

      Figueiredo, B. R.; Cardoso, S. P.; Portugal, I.; Rocha, J.; Silva, C. M. Inorganic ion exchangers for cesium removal from radioactive wastewater. Sep. Purif. Rev. 2017, 47, 306–336.

    8. [8]

      Olatunji, M. A.; Khandaker, M. U.; Mahmud, H. N. M. E. Adsorption kinetics, equilibrium and radiation effect studies of radioactive cesium by polymer-based adsorbent. J. Vinyl Addit. Technol. 2018, 24, 347–357.  doi: 10.1002/vnl.21620

    9. [9]

      Burger, A.; Lichtscheidl, I. Strontium in the environment: review about reactions of plants towards stable and radioactive strontium isotopes. Sci. Total Environ. 2019, 653, 1458–1512.  doi: 10.1016/j.scitotenv.2018.10.312

    10. [10]

      Wang, J. L.; Zhuang, S. T. Removal of cesium ions from aqueous solutions using various separation technologies. Rev. Environ. Sci. Bio-Technol. 2019, 18, 231–269.  doi: 10.1007/s11157-019-09499-9

    11. [11]

      Awual, M. R.; Yaita, T.; Miyazaki, Y.; Matsumura, D.; Shiwaku, H.; Taguchi, T. A reliable hybrid adsorbent for efficient radioactive cesium accumulation from contaminated wastewater. Sci. Rep. 2016, 6, 19937.  doi: 10.1038/srep19937

    12. [12]

      Vardhan, K. H.; Kumar, P. S.; Panda, R. C. A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197.  doi: 10.1016/j.molliq.2019.111197

    13. [13]

      Mincher, B. J.; Modolo, G.; Mezyk, S. P. Review article: the effects of radiation chemistry on solvent extraction 3: a review of actinide and lanthanide extraction. Solvent Extr. Ion Exch. 2009, 27, 579–606.  doi: 10.1080/07366290903114098

    14. [14]

      Panak, P. J.; Geist, A. Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands. Chem. Rev. 2013, 113, 1199–1236.  doi: 10.1021/cr3003399

    15. [15]

      Chi, R.; Hu, Y.; Zhu, G.; Xu, S.; Zhou, Z.; Xu, Z. Solution-chemistry analysis of ammonium bicarbonate consumption in rare-earth-element precipitation. Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. 2003, 34, 611–617.  doi: 10.1007/s11663-003-0031-z

    16. [16]

      Tan, X. L.; Wang, X. K.; Geckeis, H.; Rabung, T. Sorption of Eu(Ⅲ) on humic acid or fulvic acid bound to hydrous alumina studied by SEM-EDS, XPS, TRLFS, and batch techniques. Environ. Sci. Technol. 2008, 42, 6532–6537.  doi: 10.1021/es8007062

    17. [17]

      Fang, Q. R.; Yuan, D. Q.; Sculley, J.; Li, J. R.; Han, Z. B.; Zhou, H. C. Functional mesoporous metal-organic frameworks for the capture of heavy metal ions and size-selective catalysis. Inorg. Chem. 2010, 49, 11637–11642.  doi: 10.1021/ic101935f

    18. [18]

      Vijayaraghavan, K.; Sathishkumar, M.; Balasubramanian, R. Biosorption of lanthanum, cerium, europium, and ytterbium by a brown marine alga, turbinaria conoides. Ind. Eng. Chem. Res. 2010, 49, 4405–4411.  doi: 10.1021/ie1000373

    19. [19]

      Yaftian, M. R.; Burgard, M.; Dieleman, C. B.; Matt, D. Rare-earth metal-ion separation using a supported liquid membrane mediated by a narrow rim phosphorylated calix 4 arene. J. Membr. Sci. 1998, 144, 57–64.  doi: 10.1016/S0376-7388(98)00031-3

    20. [20]

      Romanovskiy, V. N.; Smirnov, I. V.; Babain, V. A.; Todd, T. A.; Herbst, R. S.; Law, J. D.; Brewer, K. N. The universal solvent extraction (UNEX) process. I. Development of the UNEX process solvent for the separation of cesium, strontium, and the actinides from acidic radioactive waste. Solvent Extr. Ion Exch. 2001, 19, 1–21.  doi: 10.1081/SEI-100001370

    21. [21]

      Gu, P. C.; Zhang, S.; Li, X.; Wang, X. X.; Wen, T.; Jehan, R.; Alsaedi, A.; Hayat, T.; Wang, X. K. Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ. Pollut. 2018, 240, 493–505.  doi: 10.1016/j.envpol.2018.04.136

    22. [22]

      Zhang, X.; Gu, P.; Liu, Y. Decontamination of radioactive wastewater: state of the art and challenges forward. Chemosphere 2019, 215, 543–553.  doi: 10.1016/j.chemosphere.2018.10.029

    23. [23]

      Paulus, W. J.; Komarneni, S.; Roy, R. Bulk synthesis and selective exchange of strontium ions in Na4Mg6Al4Si4O20F4 mica. Nature 1992, 357, 571–573.  doi: 10.1038/357571a0

    24. [24]

      Manos, M. J.; Kanatzidis, M. G. Metal sulfide ion exchangers: superior sorbents for the capture of toxic and nuclear waste-related metal ions. Chem. Sci. 2016, 7, 4804–4824.  doi: 10.1039/C6SC01039C

    25. [25]

      Chavez, M. L.; de Pablo, L.; Garcia, T. A. Adsorption of Ba2+ by Ca-exchange clinoptilolite tuff and montmorillonite clay. J. Hazard. Mater. 2010, 175, 216–223.  doi: 10.1016/j.jhazmat.2009.09.151

    26. [26]

      Shirzadi, H.; Nezamzadeh-Ejhieh, A. An efficient modified zeolite for simultaneous removal of Pb(Ⅱ) and Hg(Ⅱ) from aqueous solution. J. Mol. Liq. 2017, 230, 221–229.  doi: 10.1016/j.molliq.2017.01.029

    27. [27]

      Seliman, A. F.; Lasheen, Y. F.; Youssief, M. A. E.; Abo-Aly, M. M.; Shehata, F. A. Removal of some radionuclides from contaminated solution using natural clay: bentonite. J. Radioanal. Nucl. Chem. 2014, 300, 969–979.  doi: 10.1007/s10967-014-3027-z

    28. [28]

      Poojary, D. M.; Cahill, R. A.; Clearfield, A., Synthesis, crystal structures, and ion-exchange properties of a novel porous titanosilicate. Chem. Mater. 1994, 6, 2364–2368.  doi: 10.1021/cm00048a024

    29. [29]

      Rahman, R. O. A.; Ibrahium, H. A.; Hung, Y. T. Liquid radioactive wastes treatment: a review. Water 2011, 3, 551–565.  doi: 10.3390/w3020551

    30. [30]

      Mertz, J. L.; Fard, Z. H.; Malliakas, C. D.; Manos, M. J.; Kanatzidis, M. G. Selective removal of Cs+, Sr2+, and Ni2+ by K2xMgxSn3-xS6 (x = 0.5~1) (KMS-2) relevant to nuclear waste remediation. Chem. Mater. 2013, 25, 2116–2127.  doi: 10.1021/cm400699r

    31. [31]

      Ding, N.; Chung, D. Y.; Kanatzidis, M. G. K6Cd4Sn3Se13: a polar open-framework compound based on the partially destroyed supertetrahedral [Cd4Sn4Se17]10- cluster. Chem. Commun. 2004, 35, 1170–1171.

    32. [32]

      Manos, M. J.; Iyer, R. G.; Quarez, E.; Liao, J. H.; Kanatzidis, M. G. {Sn[Zn4Sn4S17]}6-: a robust open framework based on metal-linked penta-supertetrahedral [Zn4Sn4S17]10- clusters with ion-exchange properties. Angew. Chem. Int. Ed. 2005, 44, 3552–3555.  doi: 10.1002/anie.200500214

    33. [33]

      Wu, M.; Sul, W. P.; Jasutkar, N.; Huang, X. Y.; Li, J. An open-framework bimetallic chalcogenide structure K3Rb3Zn4Sn3Se13 built on a unique [Zn4Sn3Se16]12- cluster: synthesis, crystal structure, ion exchange and optical properties. Mater. Res. Bull. 2005, 40, 21–27.  doi: 10.1016/j.materresbull.2004.09.016

    34. [34]

      Ding, N.; Kanatzidis, M. G. Acid-induced conversions in open-framework semiconductors: from [Cd4Sn3Se13]6− to [Cd15Sn12Se46]14−, a remarkable disassembly/reassembly process. Angew. Chem. Int. Ed. 2006, 45, 1397–1401.  doi: 10.1002/anie.200502787

    35. [35]

      Manos, M. J.; Chrissafis, K.; Kanatzidis, M. G. Unique pore selectivity for Cs+ and exceptionally high NH4+ exchange capacity of the chalcogenide material K6Sn[Zn4Sn4S17]. J. Am. Chem. Soc. 2006, 128, 8875–8883.  doi: 10.1021/ja061342t

    36. [36]

      Manos, M. J.; Ding, N.; Kanatzidis, M. G. Layered metal sulfides: exceptionally selective agents for radioactive strontium removal. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 3696–3699.  doi: 10.1073/pnas.0711528105

    37. [37]

      Manos, M. J.; Kanatzidis, M. G. Highly efficient and rapid Cs+ uptake by the layered metal sulfide K2xMnxSn3−xS6 (KMS-1). J. Am. Chem. Soc. 2009, 131, 6599–6607.  doi: 10.1021/ja900977p

    38. [38]

      Manos, M. J.; Kanatzidis, M. G. Sequestration of heavy metals from water with layered metal sulfides. Chem. Eur. J. 2009, 15, 4779–4784.  doi: 10.1002/chem.200900353

    39. [39]

      Manos, M. J.; Petkov, V. G.; Kanatzidis, M. G. H2xMnxSn3-xS6 (x = 0.11~0.25): a novel reusable sorbent for highly specific mercury capture under extreme pH conditions. Adv. Funct. Mater. 2009, 19, 1087–1092.  doi: 10.1002/adfm.200801563

    40. [40]

      Feng, M. L.; Kong, D. N.; Xie, Z. L.; Huang, X. Y. Three-dimensional chiral microporous germanium antimony sulfide with ion-exchange properties. Angew. Chem. Int. Ed. 2008, 47, 8623–8626.  doi: 10.1002/anie.200803406

    41. [41]

      Li, J. R.; Huang, X. Y. [(Me)2NH2]0.75[Ag1.25SnSe3]: a three-dimensionally microporous chalcogenide exhibiting framework flexibility upon ion-exchange. Dalton Trans. 2011, 40, 4387–4390.  doi: 10.1039/c0dt01381a

    42. [42]

      Wang, K. Y.; Feng, M. L.; Li, J. R.; Huang, X. Y. [NH3CH3]4[In4SbS9SH]: a novel methylamine-directed indium thioantimonate with Rb+ ion-exchange property. J. Mater. Chem. A 2013, 1, 1709–1715.  doi: 10.1039/C2TA00710J

    43. [43]

      Feng, M. L.; Qi, X. H.; Zhang, B.; Huang, X. Y. [(Me2)NH2]BiGeS4: the first organically directed bismuth thiogermanate with Rb+ ion exchange property. Dalton Trans. 2014, 43, 8184–8187.  doi: 10.1039/c4dt00173g

    44. [44]

      Qi, X. H.; Du, K. Z.; Feng, M. L.; Li, J. R.; Du, C. F.; Zhang, B.; Huang, X. Y. A two-dimensionally microporous thiostannate with superior Cs+ and Sr2+ ion-exchange property. J. Mater. Chem. A 2015, 3, 5665–5673.  doi: 10.1039/C5TA00566C

    45. [45]

      Zhang, B.; Feng, M. L.; Cui, H. H.; Du, C. F.; Qi, X. H.; Shen, N. N.; Huang, X. Y. Syntheses, crystal structures, ion-exchange, and photocatalytic properties of two amine-directed Ge-Sb-S compounds. Inorg. Chem. 2015, 54, 8474–8481.  doi: 10.1021/acs.inorgchem.5b01181

    46. [46]

      Feng, M. L.; Sarma, D.; Qi, X. H.; Du, K. Z.; Huang, X. Y.; Kanatzidis, M. G. Efficient removal and recovery of uranium by a layered organic-inorganic hybrid thiostannate. J. Am. Chem. Soc. 2016, 138, 12578–12585.  doi: 10.1021/jacs.6b07351

    47. [47]

      Qi, X. H.; Du, K. Z.; Feng, M. L.; Gao, Y. J.; Huang, X. Y.; Kanatzidis, M. G. Layered A2Sn3S7·1.25H2O (A = organic cation) as efficient ion exchanger for rare earth element recovery. J. Am. Chem. Soc. 2017, 139, 4314–4317.  doi: 10.1021/jacs.7b00565

    48. [48]

      Feng, M. L.; Sarma, D.; Gao, Y. J.; Qi, X. H.; Li, W. A.; Huang, X. Y.; Kanatzidis, M. G. Efficient removal of [UO2]2+, Cs+, and Sr2+ ions by radiation-resistant gallium thioantimonates. J. Am. Chem. Soc. 2018, 140, 11133–11140.  doi: 10.1021/jacs.8b07457

    49. [49]

      Gao, Y. J.; Feng, M. L.; Zhang, B.; Wu, Z. F.; Song, Y.; Huang, X. Y. An easily synthesized microporous framework material for the selective capture of radioactive Cs+ and Sr2+ ions. J. Mater. Chem. A 2018, 6, 3967–3976.  doi: 10.1039/C7TA11208D

    50. [50]

      Zhang, B.; Li, W. A.; Liao, Y. Y.; Zhang, C.; Feng, M. L.; Huang, X. Y. [CH3NH3]4Ga4SbS9S0.28O0.72H: a three-dimensionally open-framework heterometallic chalcogenidoantimonate exhibiting Ni2+ ion-exchange property. Chem. Asian J. 2018, 13, 672–678.  doi: 10.1002/asia.201701763

    51. [51]

      Zhang, B.; Li, J.; Wang, D. N.; Feng, M. L.; Huang, X. Y. Fast and effective decontamination of aqueous mercury by a highly stable zeolitic-like chalcogenide. Inorg. Chem. 2019, 58, 4103–4109.  doi: 10.1021/acs.inorgchem.8b02981

    52. [52]

      Zhang, B.; Sun, H. Y.; Li, J.; Li, L. Z.; Deng, Y. L.; Liu, S. H.; Feng, M. L.; Huang, X. Y. Fast and selective removal of aqueous uranium by a K+-activated robust zeolitic sulfide with wide pH resistance. Inorg. Chem. 2019, 58, 11622–11629.  doi: 10.1021/acs.inorgchem.9b01531

    53. [53]

      Gao, Y. J.; Sun, H. Y.; Li, J. L.; Qi, X. H.; Du, K. Z.; Liao, Y. Y.; Huang, X. Y.; Feng, M. L.; Kanatzidis, M. G. Selective capture of Ba2+, Ni2+, and Co2+ by a robust layered metal sulfide. Chem. Mater. 2020, 32, 1957–1963.  doi: 10.1021/acs.chemmater.9b04831

    54. [54]

      Ma, W.; Hu, B.; Li, J. L.; Zhang, Z. Z.; Zeng, X.; Jin, J.; Li, Z.; Zheng, S. T.; Feng, M. L.; Huang, X. Y. The uptake of hazardous metal ions into a high-nuclearity cluster-based compound with structural transformation and proton conduction. ACS Appl. Mater. Interfaces 2020, 12, 26222–26231.  doi: 10.1021/acsami.0c06082

    55. [55]

      Sun, H.; Liu, Y.; Lin, J.; Yue, Z.; Li, W.; Jin, J.; Sun, Q.; Ai, Y.; Feng, M.; Huang, X. Highly selective recovery of lanthanides by using a layered vanadate with acid and radiation resistance. Angew. Chem. Int. Ed. 2020, 59, 1878–1883.  doi: 10.1002/anie.201912040

    56. [56]

      Olatunji, M. A.; Khandaker, M. U.; Mahmud, H. N. M. E.; Amin, Y. M. Influence of adsorption parameters on cesium uptake from aqueous solutions- a brief review. RSC Adv. 2015, 5, 71658–71683.  doi: 10.1039/C5RA10598F

    57. [57]

      Chen, S.; Hu, J.; Han, S.; Guo, Y.; Belzile, N.; Deng, T. A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade. Sep. Purif. Technol. 2020, 251, 117340.  doi: 10.1016/j.seppur.2020.117340

    58. [58]

      Sun, J.; Yang, D. J.; Sun, C. H.; Liu, L.; Yang, S. L.; Jia, Y.; Cai, R. S.; Yao, X. D. Potassium niobate nanolamina: a promising adsorbent for entrapment of radioactive cations from water. Sci. Rep. 2014, 4, 7313.

    59. [59]

      Sun, J.; Liu, L.; Zhao, X. L.; Yang, S. L.; Komarneni, S.; Yang, D. J. Capture of radioactive cations from water using niobate nanomaterials with layered and tunnel structures. RSC Adv. 2015, 5, 75354–75359.  doi: 10.1039/C5RA10907H

    60. [60]

      Ding, N.; Kanatzidis, M. G. Permeable layers with large windows in [(CH3CH2CH2)2NH2]5In5Sb6S19. 1.45H2O: high ion-exchange capacity, size discrimination, and selectivity for Cs ions. Chem. Mater. 2007, 19, 3867–3869.  doi: 10.1021/cm071179g

    61. [61]

      Yang, W.; Pan, Q.; Song, S.; Zhang, H. Metal-organic framework-based materials for the recovery of uranium from aqueous solutions. Inorg. Chem. Front. 2019, 6, 1924–1937.  doi: 10.1039/C9QI00386J

    62. [62]

      Yang, W. T.; Bai, Z. Q.; Shi, W. Q.; Yuan, L. Y.; Tian, T.; Chai, Z. F.; Wang, H.; Sun, Z. M. MOF-76: from a luminescent probe to highly efficient U sorption material. Chem. Commun. 2013, 49, 10415–10417.  doi: 10.1039/C3CC44983A

    63. [63]

      Bai, Z. Q.; Yuan, L. Y.; Zhu, L.; Liu, Z. R.; Chu, S. Q.; Zheng, L. R.; Zhang, J.; Chai, Z. F.; Shi, W. Q. Introduction of amino groups into acid-resistant MOFs for enhanced U(Ⅵ) sorption. J. Mater. Chem. A 2015, 3, 525–534.  doi: 10.1039/C4TA04878D

    64. [64]

      Endrizzi, F.; Rao, L. F. Chemical speciation of uranium(Ⅵ) in marine environments: complexation of calcium and magnesium ions with [(UO2)(CO3)3]4- and the effect on the extraction of uranium from seawater. Chem. Eur. J. 2014, 20, 14499–14506.  doi: 10.1002/chem.201403262

    65. [65]

      Kim, J.; Tsouris, C.; Mayes, R. T.; Oyola, Y.; Saito, T.; Janke, C. J.; Dai, S.; Schneider, E.; Sachde, D. Recovery of uranium from seawater: a review of current status and future research needs. Sep. Sci. Technol. 2013, 48, 367–387.  doi: 10.1080/01496395.2012.712599

    66. [66]

      Ivanov, A. S.; Parker, B. F.; Zhang, Z.; Aguila, B.; Sun, Q.; Ma, S.; Jansone-Popova, S.; Arnold, J.; Mayes, R. T.; Dai, S.; Bryantsev, V. S.; Rao, L.; Popovs, I. Siderophore-inspired chelator hijacks uranium from aqueous medium. Nat. Commun. 2019, 10, 819.  doi: 10.1038/s41467-019-08758-1

    67. [67]

      Wang, D.; Song, J.; Wen, J.; Yuan, Y.; Liu, Z.; Lin, S.; Wang, H.; Wang, H.; Zhao, S.; Zhao, X.; Fang, M.; Lei, M.; Li, B.; Wang, N.; Wang, X.; Wu, H. Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent. Adv. Energy Mater. 2018, 8, 1802607.  doi: 10.1002/aenm.201802607

    68. [68]

      Yang, H. J.; Luo, M.; Luo, L.; Wang, H. X.; Hu, D. D.; Lin, J.; Wang, X.; Wang, Y. L.; Wang, S.; Bu, X. H.; Feng, P. Y.; Wu, T. Highly selective and rapid uptake of radionuclide cesium based on robust zeolitic chalcogenide via stepwise ion-exchange strategy. Chem. Mater. 2016, 28, 8774–8780.  doi: 10.1021/acs.chemmater.6b04273

    69. [69]

      Alonso, E.; Sherman, A. M.; Wallington, T. J.; Everson, M. P.; Field, F. R.; Roth, R.; Kirchain, R. E. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies. Environ. Sci. Technol. 2012, 46, 3406–3414.  doi: 10.1021/es203518d

    70. [70]

      Zhang, N.; Salzinger, S.; Deubel, F.; Jordan, R.; Rieger, B. Surface-initiated group transfer polymerization mediated by rare earth metal catalysts. J. Am. Chem. Soc. 2012, 134, 7333–7336.  doi: 10.1021/ja3027423

    71. [71]

      Palasz, A.; Czekaj, P. Toxicological and cytophysiological aspects of lanthanides action. Acta Biochim. Pol. 2000, 47, 1107–1114.  doi: 10.18388/abp.2000_3963

    72. [72]

      Ashraf, M. I.; Li, N.; Han, X.; Yang, J.; Wang, Y.; Fan, S.; Irshad, M.; Mahmood, Q. Temporal changes in trace elements in brown soil and soybean after long-term fertilization. Arab. J. Geosci. 2017, 10, 289.  doi: 10.1007/s12517-017-3080-3

    73. [73]

      Schnabel, C.; Muenker, C.; Strub, E. La-Ce isotope measurements by multicollector-ICPMS. J. Anal. At. Spectrom. 2017, 32, 2360–2370.  doi: 10.1039/C7JA00256D

    74. [74]

      Attallah, M. F.; Rizk, S. E.; Shady, S. A. Separation of 152+154Eu, 90Sr from radioactive waste effluent using liquid-liquid extraction by polyglycerol phthalate. Nucl. Sci. Tech. 2018, 29, 84–92.  doi: 10.1007/s41365-018-0423-z

    75. [75]

      Maity, S.; Datta, A.; Lahiri, S.; Ganguly, J. Selective separation of 152Eu from a mixture of 152Eu and 137Cs using a chitosan based hydrogel. RSC Adv. 2015, 5, 89338–89345.  doi: 10.1039/C5RA14976B

    76. [76]

      El-Said, H. Radiochemical studies on the separation of cesium, cobalt, and europium from aqueous solutions using zirconium selenomolybdate sorbent. J. Chem. 2013, 756876.

    77. [77]

      Zhang, P.; Wang, L.; Yuan, L. Y.; Lan, J. H.; Chai, Z. F.; Shi, W. Q. Sorption of Eu(Ⅲ) on MXene-derived titanate structures: the effect of nano-confined space. Chem. Eng. J. 2019, 370, 1200–1209.  doi: 10.1016/j.cej.2019.03.286

    78. [78]

      El-Latif, M. M. A.; Elkady, M. F. Kinetics study and thermodynamic behavior for removing cesium, cobalt and nickel ions from aqueous solution using nano-zirconium vanadate ion exchanger. Desalination 2011, 271, 41–54.  doi: 10.1016/j.desal.2010.12.004

    79. [79]

      Elkady, M. F.; Hassan, H. S. Invention of hollow zirconium tungesto-vanadate at nanotube morphological structure for radionuclides and heavy metal pollutants decontamination from aqueous solutions. Nanoscale Res. Lett. 2015, 10, 474.  doi: 10.1186/s11671-015-1180-0

    80. [80]

      Lahiri, S.; Roy, K.; Bhattacharya, S.; Maji, S.; Basu, S. Separation of 134Cs and 152Eu using inorganic ion exchangers, zirconium vanadate and ceric vanadate. Appl. Radiat. Isot. 2005, 63, 293–297.  doi: 10.1016/j.apradiso.2005.03.007

    81. [81]

      Ortaboy, S.; Acar, E. T.; Atun, G. The removal of radioactive strontium ions from aqueous solutions by isotopic exchange using strontium decavanadates and corresponding mixed oxides. Chem. Eng. J. 2018, 344, 194–205.  doi: 10.1016/j.cej.2018.03.069

    82. [82]

      Datta, S. J.; Moon, W. K.; Choi, D. Y.; Hwang, I. C.; Yoon, K. B. A novel vanadosilicate with hexadeca-coordinated Cs+ ions as a highly effective Cs+ remover. Angew. Chem. Int. Ed. 2014, 53, 7203–7208.  doi: 10.1002/anie.201402778

    83. [83]

      Roy, K.; Mohapatra, P. K.; Rawat, N.; Pal, D. K.; Basu, S.; Manchanda, V. K. Separation of 90Y from 90Sr using zirconium vanadate as the ion exchanger. Appl. Radiat. Isot. 2004, 60, 621–624.  doi: 10.1016/j.apradiso.2003.09.015

    84. [84]

      Lutta, S. T.; Chernova, N. A.; Zavalij, P. Y.; Whittingham, M. S. Synthesis, crystal structures and magnetic properties of organically templated new layered vanadates: [C4H8NH2]V3O7, [(CH3)2NH2]V3O7, [C5H10NH2]V3O7 and [C2H5NH3]V3O7. J. Mater. Chem. 2004, 14, 2922–2928.  doi: 10.1039/b405150e

    85. [85]

      Shao, D. D.; Fan, Q. H.; Li, J. X.; Niu, Z. W.; Wu, W. S.; Chen, Y. X.; Wang, X. K. Removal of Eu(Ⅲ) from aqueous solution using ZSM-5 zeolite. Microporous Mesoporous Mat. 2009, 123, 1–9.  doi: 10.1016/j.micromeso.2009.03.043

    86. [86]

      Awual, M. R.; Kobayashi, T.; Shiwaku, H.; Miyazaki, Y.; Motokawa, R.; Suzuki, S.; Okamoto, Y.; Yaita, T. Evaluation of lanthanide sorption and their coordination mechanism by EXAFS measurement using novel hybrid adsorbent. Chem. Eng. J. 2013, 225, 558–566.  doi: 10.1016/j.cej.2013.04.015

    87. [87]

      Fu, F. L.; Wang, Q. Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 2011, 92, 407–418.  doi: 10.1016/j.jenvman.2010.11.011

    88. [88]

      Dejeant, A.; Bourva, L.; Sia, R.; Galoisy, L.; Calas, G.; Phrommavanh, V.; Descostes, M. Field analyses of 238U and 226Ra in two uranium mill tailings piles from Niger using portable HPGe detector. J. Environ. Radioact. 2014, 137, 105–112.  doi: 10.1016/j.jenvrad.2014.06.012

    89. [89]

      Reinoso-Maset, E.; Ly, J. Study of uranium(Ⅵ) and radium(Ⅱ) sorption at trace level on kaolinite using a multisite ion exchange model. J. Environ. Radioact. 2016, 157, 136–148.  doi: 10.1016/j.jenvrad.2016.03.014

    90. [90]

      Teresa Olguin, M.; Deng, S. Ce-Fe-modified zeolite-rich tuff to remove Ba2+-like 226Ra2+ in presence of As(Ⅴ) and F- from aqueous media as pollutants of drinking water. J. Hazard. Mater. 2016, 302, 341–350.  doi: 10.1016/j.jhazmat.2015.09.070

    91. [91]

      Zhu, Y. F.; Wang, W. B.; Zhang, H. F.; Ye, X. S.; Wu, Z. J.; Wang, A. Q. Fast and high-capacity adsorption of Rb+ and Cs+ onto recyclable magnetic porous spheres. Chem. Eng. J. 2017, 327, 982–991.  doi: 10.1016/j.cej.2017.06.169

    92. [92]

      Duong, D. D. Adsorption analysis: equilibria and kinetics. Imperial College Press, London 1998.

    93. [93]

      Ho, Y. S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465.  doi: 10.1016/S0032-9592(98)00112-5

    94. [94]

      Ho, Y. S.; Wase, D. A. J.; Forster, C. F. Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat. Environ. Technol. 1996, 17, 71–77.  doi: 10.1080/09593331708616362

  • 加载中
    1. [1]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    2. [2]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    3. [3]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    4. [4]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    5. [5]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    6. [6]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    7. [7]

      Lixian Cai Yingxiang Ye . A flexible-robust MOF for efficient purification of perfluoropropane. Chinese Journal of Structural Chemistry, 2024, 43(11): 100368-100368. doi: 10.1016/j.cjsc.2024.100368

    8. [8]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    9. [9]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    10. [10]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    11. [11]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    12. [12]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    13. [13]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    14. [14]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    15. [15]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    16. [16]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    17. [17]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    18. [18]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    19. [19]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    20. [20]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

Metrics
  • PDF Downloads(22)
  • Abstract views(352)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return