Citation: Dong CHEN, Ming-Zheng ZHANG, Hai-Biao CHEN, Zuo-Wei XIE, Guo-Wei WEI, Feng PAN. Persistent Homology for the Quantitative Analysis of the Structure and Stability of Carboranes[J]. Chinese Journal of Structural Chemistry, ;2020, 39(6): 999-1008. doi: 10.14102/j.cnki.0254-5861.2011-2889 shu

Persistent Homology for the Quantitative Analysis of the Structure and Stability of Carboranes

  • Corresponding author: Guo-Wei WEI, weig@msu.edu Feng PAN, panfeng@pkusz.edu.cn
  • Received Date: 25 May 2020
    Accepted Date: 5 June 2020

    Fund Project: the National Key R & D Program of China 2016YFB0700600Soft Science Research Project of Guangdong Province 2017B030301013Shenzhen Science and Technology Research Grant ZDSYS201707281026184

Figures(5)

  • Persistent homology is a powerful and novel tool for quantifying the inherent topological features of structure. In this work, we used the persistent homology for the first time to study the closo-carboranes C2Bn-2Hn (n = 5~20) and their parent structures closo-boranes dianions BnHn2- (n = 5~20), where multiple elements are present. All these structures are first investigated with the standard Vitoris-Rips complex. We interpret all barcodes representation and associate them with structural details. By means of average bar length, a linear regression model was established to construct the relationship between persistent homology features and molecular stability, which was expressed by the relative energies. For closo-boranes dianions, we only use B atom set since B and H atoms are in pairs. The average lengths of β0, β1 and β2 bars are used as the features for linear regression, and excellent correlation coefficient (0.977) between the values predicted by persistent homology and those by quantum calculations was achieved. For closo-carboranes, C–B atom set (ignore the differences in the atoms), B atom set and C atom set were considered to get the persistent homology features (since there were only two C atoms in C2Bn-2Hn, only β0 bars were considered), and seven average bar lengths were calculated, respectively. Pearson coefficient of 0.937 was obtained. We found that the stability of carboranes showed a high linear correlation with the characteristics generated from topological bars in H0, H1 and H2. The results show that the topological information generated by persistent homology can be extended and applied to multi-element systems.
  • 加载中
    1. [1]

      Edelsbrunner, H.; Letscher, D.; Zomorodian, A. Topological persistence and simplification. FOCS 2000, 28, 454–463.

    2. [2]

      Zomorodian, A.; Carlsson, G. Computing persistent homology. Discrete Comput. Geom. 2005, 33, 249–274.  doi: 10.1007/s00454-004-1146-y

    3. [3]

      Edelsbrunner, H.; Mucke, E. P. Three-dimensional alpha shapes. ACM Trans. Graph. 1994, 13, 43–72.  doi: 10.1145/174462.156635

    4. [4]

      Edelsbrunner, H.; Harer, J. Computational topology: an introduction; American Mathematical Soc. 2010, 1-241.

    5. [5]

      Dey, T. K.; Li, K.; Sun, J.; Cohen-Steiner, D. Computing geometry-aware handle and tunnel loops in 3D models. ACM Trans. Graph. 2008, 27, 1–9.

    6. [6]

      Dey, T. K.; Wang, Y. Reeb graphs: approximation and persistence. Discrete Comput. Geom. 2013, 49, 46–73.  doi: 10.1007/s00454-012-9463-z

    7. [7]

      Mischaikow, K.; Nanda, V. Morse theory for filtrations and efficient computation of persistent homology. Discrete Comput. Geom. 2013, 50, 330–353.  doi: 10.1007/s00454-013-9529-6

    8. [8]

      Ghrist, R. Barcodes: the persistent topology of data. Bull. Amer. Math. Soc. 2008, 45, 61–75.

    9. [9]

      Carlsson, G.; Ishkhanov, T.; De Silva, V.; Zomorodian, A. On the local behavior of spaces of natural images. Int. J. Comput. Vis. 2008, 76, 1–12.  doi: 10.1007/s11263-007-0056-x

    10. [10]

      Pachauri, D.; Hinrichs, C.; Chung, M. K.; Johnson, S. C.; Singh, V. Topology-based kernels with application to inference problems in Alzheimer's disease. IEEE Trans Med Imaging. 2011, 30, 1760–1770.  doi: 10.1109/TMI.2011.2147327

    11. [11]

      Singh, G.; Memoli, F.; Ishkhanov, T.; Sapiro, G.; Carlsson, G.; Ringach, D. L. Topological analysis of population activity in visual cortex. J VISION. 2008, 8, 11–11.

    12. [12]

      De Silva, V.; Ghrist, R.; Muhammad, A. Blind swarms for coverage in 2-D. Robotics: Science and Systems 2005, 335–342.

    13. [13]

      Lee, H.; Kang, H.; Chung, M. K.; Kim, B. N.; Lee, D. S. Persistent brain network homology from the perspective of dendrogram. IEEE Trans. Med. Imaging. 2012, 31, 2267–2277.  doi: 10.1109/TMI.2012.2219590

    14. [14]

      Horak, D.; Maleti´c, S.; Rajkovi´c, M. Persistent homology of complex networks. J. Stat. Mech. Theory Exp. 2009, 2009, P03034.

    15. [15]

      Carlsson, G. Topology and data. Bull New Ser. Am. Math Soc. 2009, 46, 255–308.  doi: 10.1090/S0273-0979-09-01249-X

    16. [16]

      Feng, X.; Tong, Y. Choking loops on surfaces. IEEE Trans. Med. Imaging. 2013, 19, 1298–1306.

    17. [17]

      Kasson, P. M.; Zomorodian, A.; Park, S.; Singhal, N.; Guibas, L. J.; Pande, V. S. Persistent voids: a new structural metric for membrane fusion. Bioinformatics 2007, 23, 1753–1759.  doi: 10.1093/bioinformatics/btm250

    18. [18]

      Gameiro, M.; Hiraoka, Y.; Izumi, S.; Kramar, M.; Mischaikow, K.; Nanda, V. A topological measurement of protein compressibility. Jpn. J. Ind. Appl. Math. 2015, 32, 1–17.  doi: 10.1007/s13160-014-0153-5

    19. [19]

      Dabaghian, Y.; M´emoli, F.; Frank, L.; Carlsson, G. A topological paradigm for hippocampal spatial map formation using persistent homology. PLoS Comput. Biol. 2012, 8, 1–14.

    20. [20]

      Yao, Y.; Sun, J.; Huang, X.; Bowman, G. R.; Singh, G.; Lesnick, M.; Guibas, L. J.; Pande, V. S.; Carlsson, G. Topological methods for exploring low-density states in biomolecular folding pathways. J. Chem. Phys. 2009, 130, 144115.  doi: 10.1063/1.3103496

    21. [21]

      Xia, K.; Feng, X.; Tong, Y.; Wei, G. W. Persistent homology for the quantitative prediction of fullerene stability. J. Comput. Chem. 2015, 36, 408–422.  doi: 10.1002/jcc.23816

    22. [22]

      Schleyer, P. V. R.; Najafian, K. Stability and three-dimensional aromaticity of closomonocarbaborane anions, CBn-1Hn-, and closo-dicarboranes, C2B n-2Hn. Inorg. Chem. 1998, 37, 3454–3470.  doi: 10.1021/ic980110v

    23. [23]

      Williams, R. E. Early carboranes and their structural legacy. Adv. Organomet. Chem. 1994, 36, 1–55.

    24. [24]

      Mingos, D. M. P.; Wales, D. J. Introduction to cluster chemistry. Prentice Hall. 1990, 1–318.

    25. [25]

      Zhang, J.; Xie, Z. Synthesis, structure, and reactivity of 13- and 14-vertex carboranes. Acc. Chem. Res. 2014, 47, 1623–1633.

    26. [26]

      Qiu, Z.; Ren, S.; Xie, Z. Transition metal-carboryne complexes: synthesis, bonding, and reactivity. Acc. Chem. Res. 2011, 44, 299–309.

    27. [27]

      Zhang, J.; Lin, Z.; Xie, Z. DFT studies on structures, stabilities, and electron affinities of closo-supercarboranes C2Bn-2Hn (n = 13~20). Organometallics 2015, 34, 5576–5588.

    28. [28]

      Diaz, M.; Jaballas, J.; Tran, D.; Lee, H.; Arias, J.; Onak, T. Interaction of trimethylamine and closo-1, 6-C2B7H9. Evidence for an "open" cage C2B7H9/amine adduct. Inorg. Chem. 1996, 35, 4536–4540.

    29. [29]

      Buhl, M.; Gauss, J.; Hofmann, M.; Schleyer, P. V. R. Decisive electron correlation effects on computed boron-11 and carbon-13 NMR chemical shifts. Application of the GIAO-MP2 method to boranes and carbaboranes. J. Am. Chem. Soc. 1993, 115, 12385–12390.

    30. [30]

      McKee, M. L. Theoretical study of the reaction of acetylene with B4H8. A proposed mechanism of carborane formation. J. Am. Chem. Soc. 1996, 118, 421–428.

    31. [31]

      Munch, E. Applications of Persistent Homology to Time Varying Systems. USA, Duke University 2013, 1–112.

    32. [32]

      Fornberg, B. A Practical Guide to Pseudospectral Methods. Cambridge University Press 1996, 1–231.

    33. [33]

      Xia, K.; Opron, K.; Wei, G. W. Multiscale multiphysics and multidomain models-flexibility and rigidity. J. Chem. Phys. 2013, 139, 194109.

    34. [34]

      Xia, K.; Wei, G. W. Stochastic model for protein flexibility analysis. Phys. Rev. E 2013, 88, 062709.

    35. [35]

      Xia, K.; Wei, G. W. Molecular nonlinear dynamics and protein thermal uncertainty quantification. J. Nonlinear. Sci. 2014, 24, 013103.

    36. [36]

      Pedregosa, F.; Gaël, V.; Alexandre, G.; Vincent, M.; Bertrand, T.; Olivier, G.; Mathieu, B.; Peter, P.; Ron, W.; Vincent, D.; Jacob, T. V.; Alexandre, P.; David, C.; Matthieu, B.; Matthieu, P.; Édouard, D. Scikit-learn: machine learning in python. J. Mach. Learn Res. 2011, 12, 2825–2830.

    37. [37]

      Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.; Layton, R.; VanderPlas, J.; Joly, A.; Holt, B.; Varoquaux, G. API design for machine learning software: experiences from the scikit-learn project. ECML PKDD Workshop: Languages for Data Mining and Machine Learning 2013, 108–122.

    38. [38]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Gaussian 16, Wallingford CT, Gaussian Inc. 2016.

    39. [39]

      Becke, A. The quantum theory of atoms in molecules: from solid state to DNA and drug design. John Wiley & Sons. 2007, 1–567.

    40. [40]

      Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276.

    41. [41]

      Roy, D. K.; Mondal, B.; Shankhari, P.; Anju, R.; Geetharani, K.; Mobin, S. M.; Ghosh, S. Supraicosahedral polyhedra in metallaboranes: synthesis and structural characterization of 12-, 15-, and 16-vertex rhodaboranes. Inorg. Chem. 2013, 52, 6705–6712.

    42. [42]

      Kang, S. O.; Furst, G. T.; Sneddon, L. G. Reactions of nitriles with polyhedral borane anions. Reductive cyclocondensation and carbon insertion reactions: syntheses of hypho-5-CH3-5, 11, 7, 14-CNS2B7H9 and nido-6-CH3-5, 6, 9-C3B7H10. Inorg. Chem. 1989, 28, 2339–2347.

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    3. [3]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    4. [4]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    5. [5]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    6. [6]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    7. [7]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    8. [8]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    9. [9]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    10. [10]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    11. [11]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    12. [12]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    13. [13]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    14. [14]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    15. [15]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    16. [16]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    17. [17]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    18. [18]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    19. [19]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    20. [20]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

Metrics
  • PDF Downloads(6)
  • Abstract views(275)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return