Citation: Chao-Nan CUI, Han-Yu ZHANG, Zhi-Xun LUO, Feng PAN. Preparation and Reaction of Naked Metal Clusters for Catalysis and Genetic Materials[J]. Chinese Journal of Structural Chemistry, ;2020, 39(6): 989-998. doi: 10.14102/j.cnki.0254-5861.2011-2886 shu

Preparation and Reaction of Naked Metal Clusters for Catalysis and Genetic Materials

  • Corresponding author: Zhi-Xun LUO, zxluo@iccas.ac.cn
  • ② These authors contribute equally to this work
  • Received Date: 20 May 2020
    Accepted Date: 3 June 2020

    Fund Project: the National Natural Science Foundation of China 21802146the National Natural Science Foundation of China 21722308CAS Key Research Project of Frontier Science CAS Grant QYZDB-SSW-SLH024Frontier Cross Project of National Laboratory for Molecular Sciences 051Z011BZ3

Figures(2)

  • Metal clusters that contain a small number of atoms usually present unique properties with dramatic dependence on their sizes, geometric structures, and compositions. The studies of naked metal clusters are devoted to develop new catalysts and functional materials of atomic precision, and enable to improve the fundamental theory of structure chemistry and to understand the basic reactions and properties bridging the gap between atoms and bulk materials. In particular, some interesting superatom clusters have received reasonable research interest indicative of materials gene of clusters. Here in this review, we simply summarize the preparation, stability, and reactivity of naked metal clusters with a few examples displayed. Hopefully it serves as a modest spur to stimulate more interest of related investigations in this field.
  • 加载中
    1. [1]

      Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.  doi: 10.1021/acs.chemrev.7b00776

    2. [2]

      Takahashi, K.; Takahashi, L. Data driven determination in growth of silver from clusters to nanoparticles and bulk. J. Phys. Chem. Lett. 2019, 10, 4063–4068.  doi: 10.1021/acs.jpclett.9b01394

    3. [3]

      Tyo, E. C.; Vajda, S. Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 2015, 10, 577–588.  doi: 10.1038/nnano.2015.140

    4. [4]

      Jena, P.; Sun, Q. Super atomic clusters: design rules and potential for building blocks of materials. Chem. Rev. 2018, 118, 5755–5780.  doi: 10.1021/acs.chemrev.7b00524

    5. [5]

      Jiang, D. E.; Tiago, M. L.; Luo, W.; Dai, S. The "staple" motif: a key to stability of thiolate-protected gold nanoclusters. J. Am. Chem. Soc. 2008, 130, 2777–2779.  doi: 10.1021/ja710991n

    6. [6]

      Hu, G.; Jin, R.; Jiang, D. E. Beyond the staple motif: a new order at the thiolate-gold interface. Nanoscale 2016, 8, 20103–20110.  doi: 10.1039/C6NR07709A

    7. [7]

      Chevrier, D. M.; Zeng, C.; Jin, R.; Chatt, A.; Zhang, P. Role of au4 units on the electronic and bonding properties of Au28(SR)20 nanoclusters from X-ray spectroscopy. J. Phy. Chem. C 2014, 119, 1217–1223.

    8. [8]

      Tlahuice-Flores, A. New polyhedra approach to explain the structure and evolution on size of thiolated gold clusters. J. Phy. Chem. C 2019, 123, 10831–10841.  doi: 10.1021/acs.jpcc.9b02265

    9. [9]

      Yang, H.; Lei, J.; Wu, B.; Wang, Y.; Zhou, M.; Xia, A.; Zheng, L.; Zheng, N. Crystal structure of a luminescent thiolated ag nanocluster with an octahedral Ag6(4+) core. Chem. Commun. (Camb) 2013, 49, 300–302.  doi: 10.1039/C2CC37347E

    10. [10]

      Song, Y.; Wang, S.; Zhang, J.; Kang, X.; Chen, S.; Li, P.; Sheng, H.; Zhu, M. Crystal structure of selenolate-protected Au24(SeR)20 nanocluster. J. Am. Chem. Soc. 2014, 136, 2963–2965.  doi: 10.1021/ja4131142

    11. [11]

      Harkness, K. M.; Tang, Y.; Dass, A.; Pan, J.; Kothalawala, N.; Reddy, V. J.; Cliffel, D. E.; Demeler, B.; Stellacci, F.; Bakr, O. M. Ag44(SR)304−: a silver-thiolate superatom complex. Nanoscale 2012, 4, 4269–4274.  doi: 10.1039/c2nr30773a

    12. [12]

      Yang, H.; Wang, Y.; Huang, H.; Gell, L.; Lehtovaara, L.; Malola, S.; Hakkinen, H.; Zheng, N. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 2013, 4, 2422.  doi: 10.1038/ncomms3422

    13. [13]

      Yuan, S. F.; Xu, C. Q.; Li, J.; Wang, Q. M. A ligand-protected golden fullerene: the dipyridylamido Au328+ nanocluster. Angew. Chem. Int. Ed. 2019, 5906–5909.

    14. [14]

      Jia, Y.; Luo, Z. Thirteen-atom metal clusters for genetic materials. Coord. Chem. Rev. 2019, 400, 213053.  doi: 10.1016/j.ccr.2019.213053

    15. [15]

      Chen, Y.; Zeng, C.; Liu, C.; Kirschbaum, K.; Gayathri, C.; Gil, R. R.; Rosi, N. L.; Jin, R. Crystal structure of barrel-shaped chiral Au130(p-mbt)50 nanocluster. J. Am. Chem. Soc. 2015, 137, 10076–10079.  doi: 10.1021/jacs.5b05378

    16. [16]

      Wan, X. K.; Lin, Z. W.; Wang, Q. M. Au20 nanocluster protected by hemilabile phosphines. J. Am. Chem. Soc. 2012, 134, 14750–14752.  doi: 10.1021/ja307256b

    17. [17]

      Zeng, C. J.; Liu, C.; Chen, Y. X.; Rosi, N. L.; Jin, R. C. Gold-thiolate ring as a protecting motif in the Au20(SR)16 nanocluster and implications. J. Am. Chem. Soc. 2014, 136, 11922–11925.  doi: 10.1021/ja506802n

    18. [18]

      Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 2008, 130, 5883–5885.  doi: 10.1021/ja801173r

    19. [19]

      Crasto, D.; Malola, S.; Brosofsky, G.; Dass, A.; Hakkinen, H. Single crystal XRD structure and theoretical analysis of the chiral Au30S(S-t-Bu)18 cluster. J. Am. Chem. Soc. 2014, 136, 5000–5005.  doi: 10.1021/ja412141j

    20. [20]

      Yang, H. Y.; Wang, Y.; Edwards, A. J.; Yan, J. Z.; Zheng, N. F. High-yield synthesis and crystal structure of a green Au30 cluster co-capped by thiolate and sulfide. Chem. Commun. 2014, 50, 14325–14327.  doi: 10.1039/C4CC01773K

    21. [21]

      Zeng, C. J.; Qian, H. F.; Li, T.; Li, G.; Rosi, N. L.; Yoon, B.; Barnett, R. N.; Whetten, R. L.; Landman, U.; Jin, R. C. Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angew. Chem. Int. Ed. 2012, 51, 13114–13118.  doi: 10.1002/anie.201207098

    22. [22]

      Das, A.; Liu, C.; Zeng, C. J.; Li, G.; Li, T.; Rosi, N. L.; Jin, R. C. Cyclopentanethiolato-protected Au36(SC5H9)24 nanocluster: crystal structure and implications for the steric and electronic effects of ligand. J. Phys. Chem. A 2014, 118, 8264–8269.

    23. [23]

      Qian, H. F.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. C. Total structure determination of thiolate-protected au38 nanoparticles. J. Am. Chem. Soc. 2010, 132, 8280–8281.  doi: 10.1021/ja103592z

    24. [24]

      Boyen, H. G.; Kastle, G.; Weigl, F.; Koslowski, B.; Dietrich, C.; Ziemann, P.; Spatz, J. P.; Riethmuller, S.; Hartmann, C.; Moller, M.; Schmid, G.; Garnier, M. G.; Oelhafen, P. Oxidation-resistant gold-55 clusters. Science 2002, 297, 1533–1536.  doi: 10.1126/science.1076248

    25. [25]

      Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 2008, 454, 981–983.  doi: 10.1038/nature07194

    26. [26]

      Chang, C. M.; Cheng, C.; Wei, C. M. Co oxidation on unsupported Au55, Ag55, and Au25Ag30 nanoclusters. J. Chem. Phys. 2008, 128, 124710.  doi: 10.1063/1.2841364

    27. [27]

      Song, Y.; Fu, F.; Zhang, J.; Chai, J.; Kang, X.; Li, P.; Li, S.; Zhou, H.; Zhu, M. The magic Au60 nanocluster: a new cluster-assembled material with five Au13 building blocks. Angew. Chem. Int. Ed. 2015, 54, 8430–8434.  doi: 10.1002/anie.201501830

    28. [28]

      Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 angstrom resolution. Science 2007, 318, 430–433.  doi: 10.1126/science.1148624

    29. [29]

      Schmid, G. The relevance of shape and size of Au55 clusters. Chem. Soc. Rev. 2008, 37, 1909–1930.  doi: 10.1039/b713631p

    30. [30]

      Shichibu, Y.; Suzuki, K.; Konishi, K. Facile synthesis and optical properties of magic-number Au13 clusters. Nanoscale 2012, 4, 4125–4129.  doi: 10.1039/c2nr30675a

    31. [31]

      Wang, J. L.; Wang, G. H.; Zhao, J. J. Density-functional study of Au-n (n = 2~20) clusters: lowest-energy structures and electronic properties. Phys. Rev. B 2002, 66, 035418.  doi: 10.1103/PhysRevB.66.035418

    32. [32]

      Zhao, J.; Yang, J. L.; Hou, J. G. Theoretical study of small two-dimensional gold clusters. Phys. Rev. B 2003, 67, 085404.  doi: 10.1103/PhysRevB.67.085404

    33. [33]

      Xiao, L.; Tollberg, B.; Hu, X. K.; Wang, L. C. Structural study of gold clusters. J. Chem. Phys. 2006, 124, 114309.  doi: 10.1063/1.2179419

    34. [34]

      Gruber, M.; Heimel, G.; Romaner, L.; Bredas, J. L.; Zojer, E. First-principles study of the geometric and electronic structure of Au(13) clusters: importance of the prism motif. Phys. Rev. B 2008, 77, 165411.  doi: 10.1103/PhysRevB.77.165411

    35. [35]

      Shafai, G.; Hong, S.; Bertino, M.; Rahman, T. S. Effect of ligands on the geometric and electronic structure of Au-13 clusters. J. Phys. Chem. C 2009, 113, 12072–12078.  doi: 10.1021/jp811200e

    36. [36]

      Ding, W.; Huang, C.; Guan, L.; Liu, X.; Luo, Z.; Li, W. Water-soluble Au 13 clusters protected by binary thiolates: structural accommodation and the use for chemosensing. Chem. Phys. Lett. 2017, 676, 18–24.  doi: 10.1016/j.cplett.2017.03.036

    37. [37]

      Vandervelden, J. W. A.; Vollenbroek, F. A.; Bour, J. J.; Beurskens, P. T.; Smits, J. M. M.; Bosman, W. P. Gold clusters containing bidentate phosphine-ligands-preparation and X-ray structure investigation of Au5(dppmH)3(dppm)(NO3)2 and Au13(dppmH)6(NO3)n. Recl. Trav. Chim. Pays-Bas 1981, 100, 148–152.  doi: 10.1002/recl.19811000404

    38. [38]

      Briant, C. E.; Theobald, B. R. C.; White, J. W.; Bell, L. K.; Mingos, D. M. P.; Welch, A. J. Synthesis and X-ray structural characterization of the centered icosahedral gold cluster compound Au13(PMe2Ph)10Cl2(PF6)3- the realization of a theoretical prediction. J. Chem. Soc., Chem. Commun. 1981, 201–202.

    39. [39]

      Zhang, H.; Reber, A. C.; Geng, L.; Rabayda, D.; Wu, H.; Luo, Z.; Yao, J.; Khanna, S. N. Formation of Al+(C6H6)13: the origin of magic number in metal-benzene clusters determined by the nature of the core. CCS Chemistry 2019, 1, 571–581.  doi: 10.31635/ccschem.019.20190033

    40. [40]

      Luo, Z.; Castleman, A. W. Jr.; Khanna, S. N. Reactivity of metal clusters. Chem. Rev. 2016, 116, 14456–14492.  doi: 10.1021/acs.chemrev.6b00230

    41. [41]

      Zhang, X.; Wang, Y.; Wang, H.; Lim, A.; Gantefoer, G.; Bowen, K. H.; Reveles, J. U.; Khanna, S. N. On the existence of designer magnetic superatoms. J. Am. Chem. Soc. 2013, 135, 4856–4861.  doi: 10.1021/ja400830z

    42. [42]

      Imaoka, T.; Kitazawa, H.; Chun, W. J.; Omura, S.; Albrecht, K.; Yamamoto, K. Magic number Pt-13 and misshapen Pt-12 clusters: which one is the better catalyst? J. Am. Chem. Soc. 2013, 135, 13089–13095.  doi: 10.1021/ja405922m

    43. [43]

      Luo, Z.; Castleman, A. W. Special and general superatoms. Acc. Chem. Res. 2014, 47, 2931–2940.  doi: 10.1021/ar5001583

    44. [44]

      Wu, H. M.; Luo, Z. X. Chlorine-passivated superatom Al37 clusters for nonlinear optics. Sci. China-Chem. 2018, 61, 1619–1623.  doi: 10.1007/s11426-018-9316-4

    45. [45]

      Chen, J.; Luo, Z.; Yao, J. Theoretical study of tetrahydrofuran-stabilized Al13 superatom cluster. J. Phys. Chem. A 2016, 120, 3950–3957.

    46. [46]

      Pembere, A. M.; Luo, Z. X. Jones oxidation of glycerol catalysed by small gold clusters. Phys. Chem. Chem. Phys. 2017, 19, 6620–6625.  doi: 10.1039/C6CP07941E

    47. [47]

      Negreiros, F. R.; Halder, A.; Yin, C. R.; Singh, A.; Barcaro, G.; Sementa, L.; Tyo, E. C.; Pellin, M. J.; Bartling, S.; Meiwes-Broer, K. H.; Seifert, S.; Sen, P.; Nigam, S.; Majumder, C.; Fukui, N.; Yasumatsu, H.; Vajda, S.; Fortunelli, A. Bimetallic Ag-Pt sub-nanometer supported clusters as highly efficient and robust oxidation catalysts. Angew. Chem. Int. Ed. 2018, 57, 1209–1213.  doi: 10.1002/anie.201709784

    48. [48]

      Ren, Y.; Yang, Y.; Zhao, Y. X.; He, S. G. Size-dependent reactivity of rhodium cluster anions toward methane. J. Phy. Chem. C 2019, 123, 17035–17042.  doi: 10.1021/acs.jpcc.9b04750

    49. [49]

      Huheey, J. E.; Cottrell, T. L. The Strengths of Chemical Bonds. 2nd ed ed. Academic Press: Butterworths, London 1958.

    50. [50]

      Kerr, J. A. Bond dissociation energies by kinetic methods. Chem. Rev. 1966, 66, 465–500.  doi: 10.1021/cr60243a001

    51. [51]

      Haynes, W. M. Crc Handbook of Chemistry and Physics. 95th ed.; CRC press 2014.

    52. [52]

      Yuan, Z.; Liu, Q. Y.; Li, X. N.; He, S. G. Formation, distribution, and photoreaction of nano-sized vanadium oxide cluster anions. Int. J. Mass Spectrom. 2016, 407, 62–68.  doi: 10.1016/j.ijms.2016.07.004

    53. [53]

      Dietz, T. G.; Duncan, M. A.; Powers, D. E.; Smalley, R. E. Laser production of supersonic metal cluster beams. J. Chem. Phys. 1981, 74, 6511–6512.  doi: 10.1063/1.440991

    54. [54]

      Geusic, M. E.; Morse, M. D.; O'Brien, S. C.; Smalley, R. E. Surface reactions of metal clusters i: the fast flow cluster reactor. Rev. Sci. Instrum. 1985, 56, 2123–2130.  doi: 10.1063/1.1138381

    55. [55]

      Haberland, H.; Karrais, M.; Mall, M.; Thurner, Y. Thin films from energetic cluster impact: a feasibility study. J. Vac. Sci. Technol. A 1992, 10, 3266–3271.  doi: 10.1116/1.577853

    56. [56]

      Goldby, I. M.; vonIssendorff, B.; Kuipers, L.; Palmer, R. E. Gas condensation source for production and deposition of size-selected metal clusters. Rev. Sci. Instrum. 1997, 68, 3327–3334.  doi: 10.1063/1.1148292

    57. [57]

      Pratontep, S.; Carroll, S. J.; Xirouchaki, C.; Streun, M.; Palmer, R. E. Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation. Rev. Sci. Instrum. 2005, 76, 045103.  doi: 10.1063/1.1869332

    58. [58]

      Luo, Z.; Woodward, W. H.; Smith, J. C.; Castleman, A. W. Jr. Growth kinetics of al clusters in the gas phase produced by a magnetron-sputtering source. Int. J. Mass Spectrom. 2012, 309, 176–181.  doi: 10.1016/j.ijms.2011.09.016

    59. [59]

      Larsen, R. A.; Neoh, S. K.; Herschbach, D. R. Seeded supersonic alkali atom beams. Rev. Sci. Instrum. 1974, 45, 1511–1516.  doi: 10.1063/1.1686549

    60. [60]

      Preuss, D. R.; Pace, S. A.; Gole, J. L. Supersonic expansion of pure copper vapor. J. Chem. Phys. 1979, 71, 3553–3560.  doi: 10.1063/1.438811

    61. [61]

      Sattler, K.; Muhlbach, J.; Recknagel, E. Generation of metal-clusters containing from 2 to 500 atoms. Phys. Rev. Lett. 1980, 45, 821–824.  doi: 10.1103/PhysRevLett.45.821

    62. [62]

      Riley, S. J.; Parks, E. K.; Mao, C. R.; Pobo, L. G.; Wexler, S. Generation of continuous beams of refractory-metal clusters. J. Phys. Chem. 1982, 86, 3911–3913.  doi: 10.1021/j100217a004

    63. [63]

      Knight, W. D.; Clemenger, K.; Deheer, W. A.; Saunders, W. A.; Chou, M. Y.; Cohen, M. L. Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett. 1984, 52, 2141–2143.  doi: 10.1103/PhysRevLett.52.2141

    64. [64]

      Han, K. L.; Lu, R. C.; Lin, H.; Gallogy, E. B.; Jackson, W. M. Formation of a supersonic beam of C60H2x in a knudsen oven source containing C60 and hydrogen. Chem. Phys. Lett. 1995, 243, 29–35.  doi: 10.1016/0009-2614(95)00787-5

    65. [65]

      Satoh, N.; Kimura, K. High-resolution solid-state nmr in liquids. 2. Aluminum-27 nmr study of aluminum trifluoride ultrafine particles. J. Am. Chem. Soc. 1990, 112, 4688–4692.  doi: 10.1021/ja00168a010

    66. [66]

      Haberland, H. Clusters of Atoms and Molecules: Theory, Experiment, and Clusters of Atoms. Springer-Verlag 1994, p422.

    67. [67]

      Dole, M.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B. Molecular beams of macroions. J. Chem. Phys. 1968, 49, 2240–2249.  doi: 10.1063/1.1670391

    68. [68]

      Yamashita, M.; Fenn, J. B. Electrospray ion-source - another variation on the free-jet theme. J. Phys. Chem. 1984, 88, 4451–4459.  doi: 10.1021/j150664a002

    69. [69]

      Whitehouse, C.; Dreyer, R.; Yamashita, M.; Fenn, J. B. Electrospray interface for liquid chromatographs and mass spectrometers. Anal. Chem. 1985, 57, 675–679.  doi: 10.1021/ac00280a023

    70. [70]

      Zhang, H.; Wu, H.; Jia, Y.; Geng, L.; Luo, Z.; Fu, H.; Yao, J. An integrated instrument of DUV-IR photoionization mass spectrometry and spectroscopy for neutral clusters. Rev. Sci. Instrum. 2019, 90, 073101.  doi: 10.1063/1.5108994

    71. [71]

      Duncan, M. A. Invited review article: laser vaporization cluster sources. Rev. Sci. Instrum. 2012, 83, 041101.  doi: 10.1063/1.3697599

    72. [72]

      Yuan, C.; Liu, X.; Zeng, C.; Zhang, H.; Jia, M.; Wu, Y.; Luo, Z.; Fu, H.; Yao, J. All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry. Rev. Sci. Instrum. 2016, 87, 024102.  doi: 10.1063/1.4941841

    73. [73]

      Armstrong, A.; Zhang, H.; Reber, A. C.; Jia, Y.; Wu, H.; Luo, Z.; Khanna, S. N. Al valence controls the coordination and stability of cationic aluminum-oxygen clusters in reactions of Aln+ with oxygen. J. Phys. Chem. A 2019, 123, 7463–7469.  doi: 10.1021/acs.jpca.9b05646

    74. [74]

      Zhang, H.; Wu, H.; Geng, L.; Jia, Y.; Yang, M.; Luo, Z. Furthering the reaction mechanism of cationic vanadium clusters towards oxygen. Phys. Chem. Chem. Phys. 2019, 21, 11234–11241.  doi: 10.1039/C9CP01192G

    75. [75]

      Yang, M.; Zhang, H.; Jia, Y.; Yin, B.; Luo, Z. Charge-sensitive cluster-π interactions cause altered reactivity of Aln±, 0 clusters with benzene: enhanced stability of Al13+bz. J. Phys. Chem. A 2020.

    76. [76]

      Yang, M.; Wu, H.; Huang, B.; Luo, Z.; Hansen, K. Iodization threshold in size-dependent reactions of lead clusters Pbn+ with iodomethane. J. Phys. Chem. A 2020, 124, 2505–2512.

    77. [77]

      Knight, W. D.; Clemenger, K.; de Heer, W. A.; Saunders, W. A.; Chou, M. Y.; Cohen, M. L. Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett. 1984, 52, 2141–2143.  doi: 10.1103/PhysRevLett.52.2141

    78. [78]

      Brack, M. The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Rev. Mod. Phys. 1993, 65, 677–732.  doi: 10.1103/RevModPhys.65.677

    79. [79]

      de Heer, W. A. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 1993, 65, 611–676.  doi: 10.1103/RevModPhys.65.611

    80. [80]

      Cha, C. Y.; Ganteför, G.; Eberhardt, W. Photoelectron spectroscopy of Cu-n clusters: comparison with jellium model predictions. J. Chem. Phys. 1993, 99, 6308–6312.  doi: 10.1063/1.465868

    81. [81]

      King, R. B.; Zhao, J. The isolable matryoshka nesting doll icosahedrql cluster As@Ni–12@As–20 (3-) as a "superatom": analogy with the jellium cluster Al-13(-) generated in the gas phase by laser vaporization. Chem. Commun. 2006, 4204–4205.

    82. [82]

      Jones, C. E. Jr.; Clayborne, P. A.; Reveles, J. U.; Melko, J. J.; Gupta, U.; Khanna, S. N.; Castleman, A. W. Al(n)bi clusters: transitions between aromatic and jellium stability. J. Phys. Chem. A 2008, 112, 13316–13325.

    83. [83]

      King, R. B.; Silaghi-Dumitrescu, I. The role of "external" lone pairs in the chemical bonding of bare post-transition element clusters: the wade-mingos rules versus the jellium model. Dalton Trans. 2008, 44, 6083–6088.

    84. [84]

      Polozkov, R. G.; Ivanov, V. K.; Verkhovtsev, A. V.; Solov'yov, A. V. Stability of metallic hollow cluster systems: Jellium model approach. Phys. Rev. A 2009, 79, 063203.  doi: 10.1103/PhysRevA.79.063203

    85. [85]

      Melko, J. J.; Clayborne, P. A.; Jones, C. E.; Reveles, J. U.; Gupta, U.; Khanna, S. N.; Castleman, A. W. Combined experimental and theoretical study of AlnX (n = 1~6.; X = As, Sb) clusters: evidence of aromaticity and the jellium model. J. Phys. Chem. A 2010, 114, 2045–2052.  doi: 10.1021/jp908406h

    86. [86]

      Reber, A. C.; Khanna, S. N. Superatoms: electronic and geometric effects on reactivity. Acc. Chem. Res. 2017, 50, 255–263.  doi: 10.1021/acs.accounts.6b00464

    87. [87]

      Kuo, K. H. Mackay, anti-mackay, double-mackay, pseudo-mackay, and related icosahedral shell clusters. Struct. Chem. 2002, 13, 221–222.  doi: 10.1023/A:1015847520094

    88. [88]

      Leuchtner, R. E.; Harms, A. C.; Castleman, A. W. Thermal metal cluster anion reactions - behavior of aluminum clusters with oxygen. J. Chem. Phys. 1989, 91, 2753–2754.  doi: 10.1063/1.456988

    89. [89]

      Luo, Z.; Grover, C. J.; Reber, A. C.; Khanna, S. N.; Castleman, A. W. Jr. Probing the magic numbers of aluminum-magnesium cluster anions and their reactivity toward oxygen. J. Am. Chem. Soc. 2013, 135, 4307–4313.  doi: 10.1021/ja310467n

    90. [90]

      Li, X. L.; Kuznetsov, A. E.; Zhang, H. F.; Boldyrev, A. I.; Wang, L. S. Observation of all-metal aromatic molecules. Science 2001, 291, 859–861.  doi: 10.1126/science.291.5505.859

    91. [91]

      Luo, Z.; Gamboa, G. U.; Smith, J. C.; Reber, A. C.; Reveles, J. U.; Khanna, S. N.; Castleman, A. W. Jr. Spin accommodation and reactivity of silver clusters with oxygen: the enhanced stability of ag13-. J. Am. Chem. Soc. 2012, 134, 18973–18978.  doi: 10.1021/ja303268w

    92. [92]

      Li, J.; Li, X.; Zhai, H. J.; Wang, L. S. Au20: a tetrahedral cluster. Science 2003, 299, 864–864.  doi: 10.1126/science.1079879

    93. [93]

      Reber, A. C.; Khanna, S. N.; Roach, P. J.; Woodward, W. H.; Castleman, A. W. Jr. Reactivity of aluminum cluster anions with water: origins of reactivity and mechanisms for H–2 release. J. Phys. Chem. A 2010, 114, 6071–6081.  doi: 10.1021/jp911136s

    94. [94]

      Weichman, M. L.; Debnath, S.; Kelly, J. T.; Gewinner, S.; Schoellkopf, W.; Neumark, D. M.; Asmis, K. R. Dissociative water adsorption on gas-phase titanium dioxide cluster anions probed with infrared photodissociation spectroscopy. Top. Catal. 2018, 61, 92–105.  doi: 10.1007/s11244-017-0863-4

    95. [95]

      Pembere, A. M. S.; Liu, X. H.; Ding, W. H.; Luo, Z. X. How partial atomic charges and bonding orbitals affect the reactivity of aluminum clusters with water? J. Phys. Chem. A 2018, 122, 3107–3114.  doi: 10.1021/acs.jpca.7b10635

    96. [96]

      Zhang, H.; Cui, C.; Luo, Z. The doping effect of 13-atom iron clusters on water adsorption and O-H bond dissociation. J. Phys. Chem. A 2019, 123, 4891–4899.  doi: 10.1021/acs.jpca.9b02154

    97. [97]

      Chen, J.; Luo, Z. Single-point attack of two H2O molecules towards a Lewis acid site on the GaAl12 clusters for hydrogen evolution. Chemphyschem 2019, 20, 499–505.  doi: 10.1002/cphc.201800868

    98. [98]

      Roach, P. J.; Woodward, W. H.; Castleman, A. W. Jr.; Reber, A. C.; Khanna, S. N. Complementary active sites cause size-selective reactivity of aluminum cluster anions with water. Science 2009, 323, 492–495.  doi: 10.1126/science.1165884

    99. [99]

      Luo, Z.; Smith, J. C.; Woodward, W. H.; Castleman, A. W. Jr. Reactivity of aluminum clusters with water and alcohols: competition and catalysis? J. Phys. Chem. Lett. 2012, 3, 3818–3821.  doi: 10.1021/jz301830v

    100. [100]

      Luo, Z. X.; Smith, J. C.; Berkdemir, C.; Castleman, A. W. Jr. Gas-phase reactivity of aluminum cluster anions with ethanethiol: carbon-sulfur bond activation. Chem. Phys. Lett. 2013, 590, 63–68.  doi: 10.1016/j.cplett.2013.10.074

    101. [101]

      Luo, Z.; Gamboa, G. U.; Jia, M.; Reber, A. C.; Khanna, S. N.; Castleman, A. W. Jr. Reactivity of silver clusters anions with ethanethiol. J. Phys. Chem. A 2014, 118, 8345–8350.  doi: 10.1021/jp501164g

    102. [102]

      Luo, Z.; Berkdemir, C.; Smith, J. C.; Castleman, A. W. Jr. Cluster reaction of Ag8-/Cu8- with chlorine: evidence for the harpoon mechanism? Chem. Phys. Lett. 2013, 582, 24–30.  doi: 10.1016/j.cplett.2013.07.029

    103. [103]

      Reddy, A. S.; Zipse, H.; Sastry, G. N. Cation-pi interactions of bare and coordinatively saturated metal ions: contrasting structural and energetic characteristics. J. Phys. Chem. B 2007, 111, 11546–11553.  doi: 10.1021/jp075768l

    104. [104]

      Brathwaite, A. D.; Ward, T. B.; Walters, R. S.; Duncan, M. A. Cation-pi and ch-pi interactions in the coordination and solvation of Au+(acetylene)n complexes. J. Phys. Chem. A 2015, 119, 5658–5667.  doi: 10.1021/acs.jpca.5b03360

    105. [105]

      Yang, M.; Wu, H.; Huang, B.; Luo, Z. Cluster-pi interactions cause size-selective reactivity of cationic silver clusters with acetylene: the distinctive Ag7+ C2H2. J. Phys. Chem. A 2019, 123, 6921–6926.  doi: 10.1021/acs.jpca.9b06502

    106. [106]

      Han, M.; Wang, Z. Y.; Chen, P. P.; Yu, S. W.; Wang, G. H. Mechanism of neutral cluster beam deposition. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 1998, 135, 564–569.  doi: 10.1016/S0168-583X(97)00635-6

    107. [107]

      Dai, Y.; Gorey, T. J.; Anderson, S. L.; Lee, S.; Lee, S.; Seifert, S.; Winans, R. E. Inherent size effects on xanes of nanometer metal clusters: size-selected platinum clusters on silica. J. Phy. Chem. C 2016, 121, 361–374.

    108. [108]

      von Weber, A.; Anderson, S. L. Electrocatalysis by mass-selected ptn clusters. Acc. Chem. Res. 2016, 49, 2632–2639.  doi: 10.1021/acs.accounts.6b00387

    109. [109]

      Timoshenko, J.; Halder, A.; Yang, B.; Seifert, S.; Pellin, M. J.; Vajda, S.; Frenkel, A. I. Subnanometer substructures in nanoassemblies formed from clusters under a reactive atmosphere revealed using machine learning. J. Phys. Chem. C 2018, 122, 21686–21693.  doi: 10.1021/acs.jpcc.8b07952

    110. [110]

      Bentley, C. L.; Kang, M.; Unwin, P. R. Nanoscale surface structure-activity in electrochemistry and electrocatalysis. J. Am. Chem. Soc. 2018, 141, 2179–2193.

    111. [111]

      Wang, H.; Gu, X. K.; Zheng, X.; Pan, H.; Zhu, J.; Chen, S.; Cao, L.; Li, W. X.; Lu, J. Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity. Sci. Adv. 2019, 5, eaat6413.  doi: 10.1126/sciadv.aat6413

    112. [112]

      Zhou, M.; Bao, S.; Bard, A. J. Probing size and substrate effects on the hydrogen evolution reaction by single isolated pt atoms, atomic clusters, and nanoparticles. J. Am. Chem. Soc. 2019, 141, 7327–7332.  doi: 10.1021/jacs.8b13366

    113. [113]

      Yin, C.; Negreiros, F. R.; Barcaro, G.; Beniya, A.; Sementa, L.; Tyo, E. C.; Bartling, S.; Meiwes-Broer, K. H.; Seifert, S.; Hirata, H.; Isomura, N.; Nigam, S.; Majumder, C.; Watanabe, Y.; Fortunelli, A.; Vajda, S. Alumina-supported sub-nanometer Pt10 clusters: amorphization and role of the support material in a highly active co oxidation catalyst. J. Mater. Chem. A 2017, 5, 4923–4931.  doi: 10.1039/C6TA10989F

    114. [114]

      Yang, B.; Liu, C.; Halder, A.; Tyo, E. C.; Martinson, A. B. F.; Seifer, S.; Zapol, P.; Curtiss, L. A.; Vajda, S. Copper cluster size effect in methanol synthesis from CO2. J. Phys. Chem. C 2017, 121, 10406–10412.  doi: 10.1021/acs.jpcc.7b01835

    115. [115]

      Halder, A.; Liu, C.; Liu, Z.; Emery, J. D.; Pellin, M. J.; Curtiss, L. A.; Zapol, P.; Vajda, S.; Martinson, A. B. F. Water oxidation catalysis via size-selected iridium clusters. J. Phys. Chem. C 2018, 122, 9965–9972.  doi: 10.1021/acs.jpcc.8b01318

    116. [116]

      Halder, A.; Curtiss, L. A.; Fortunelli, A.; Vajda, S. Perspective: size selected clusters for catalysis and electrochemistry. J. Chem. Phys. 2018, 148, 110901.  doi: 10.1063/1.5020301

    117. [117]

      Laskin, J.; Johnson, G. E.; Warneke, J.; Prabhakaran, V. From isolated ions to multilayer functional materials using ion soft landing. Angew Chem. Int. Ed. Engl. 2018, 57, 16270–16284.  doi: 10.1002/anie.201712296

    118. [118]

      Lei, Y.; Mehmood, F.; Lee, S.; Greeley, J.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Meyer, R. J.; Redfern, P. C.; Teschner, D.; Schlogl, R.; Pellin, M. J.; Curtiss, L. A.; Vajda, S. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 2010, 328, 224–228.  doi: 10.1126/science.1185200

    119. [119]

      Cui, C.; Luo, Z.; Yao, J. Enhanced catalysis of pt3 clusters supported on graphene for N–H bond dissociation. CCS Chemistry 2019, 1, 215–225.  doi: 10.31635/ccschem.019.20180031

    120. [120]

      Zhang, H.; Cui, C.; Luo, Z. MoS2-supported Fe2 clusters catalyzing nitrogen reduction reaction to produce ammonia. J. Phy. Chem. C 2020, 124, 6260–6266.  doi: 10.1021/acs.jpcc.0c00486

    121. [121]

      Qin, Y.; Han, J.; Guo, G.; Du, Y.; Li, Z.; Song, Y.; Pi, L.; Wang, X.; Wan, X.; Han, M.; Song, F. Enhanced quantum coherence in graphene caused by Pd cluster deposition. Appl. Phys. Lett. 2015, 106, 023108.  doi: 10.1063/1.4905868

    122. [122]

      Kwon, G.; Ferguson, G. A.; Heard, C. J.; Tyo, E. C.; Yin, C.; DeBartolo, J.; Seifert, S.; Winans, R. E.; Kropf, A. J.; Greeley, J.; Johnston, R. L.; Curtiss, L. A.; Pellin, M. J.; Vajda, S. Size-dependent subnanometer pd cluster (Pd–4, Pd–6, and Pd–17) water oxidation electrocatalysis. Acs Nano 2013, 7, 5808–5817.  doi: 10.1021/nn400772s

    123. [123]

      Miller, S. A.; Luo, H.; Pachuta, S. J.; Cooks, R. G. Soft-landing of polyatomic ions at fluorinated self-assembled monolayer surfaces. Science 1997, 275, 1447–1450.  doi: 10.1126/science.275.5305.1447

    124. [124]

      Mitsui, M.; Nagaoka, S.; Matsumoto, T.; Nakajima, A. Soft-landing isolation of vanadium-benzene sandwich clusters on a room-temperature substrate using n-alkanethiolate self-assembled monolayer matrixes. J. Phys. Chem. B 2006, 110, 2968–2971.  doi: 10.1021/jp057194v

    125. [125]

      Nesselberger, M.; Roefzaad, M.; Hamou, R. F.; Biedermann, P. U.; Schweinberger, F. F.; Kunz, S.; Schloegl, K.; Wiberg, G. K.; Ashton, S.; Heiz, U.; Mayrhofer, K. J.; Arenz, M. The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat. Mater. 2013, 12, 919–924.  doi: 10.1038/nmat3712

    126. [126]

      Wettergren, K.; Schweinberger, F. F.; Deiana, D.; Ridge, C. J.; Crampton, A. S.; Rotzer, M. D.; Hansen, T. W.; Zhdanov, V. P.; Heiz, U.; Langhammer, C. High sintering resistance of size-selected platinum cluster catalysts by suppressed ostwald ripening. Nano Lett. 2014, 14, 5803–5809.  doi: 10.1021/nl502686u

    127. [127]

      Rondelli, M.; Zwaschka, G.; Krause, M.; Rötzer, M. D.; Hedhili, M. N.; Högerl, M. P.; D'Elia, V.; Schweinberger, F. F.; Basset, J. M.; Heiz, U. Exploring the potential of different-sized supported subnanometer pt clusters as catalysts for wet chemical applications. ACS Catal. 2017, 7, 4152–4162.  doi: 10.1021/acscatal.7b00520

  • 加载中
    1. [1]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    2. [2]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    3. [3]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    4. [4]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    5. [5]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    6. [6]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    7. [7]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    8. [8]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    9. [9]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    10. [10]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    11. [11]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    12. [12]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    13. [13]

      Yingxiao ZongYangfei WeiXiaoqing LiuJunke WangHuanfang GuoJunli WangZhuangzhi ShiTao TuCheng YangChongyang WangLeyong Wang . The 4th CCL Organic Chemistry Forum held in Zhangye. Chinese Chemical Letters, 2024, 35(8): 109743-. doi: 10.1016/j.cclet.2024.109743

    14. [14]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    15. [15]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    16. [16]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    17. [17]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    18. [18]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    19. [19]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    20. [20]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

Metrics
  • PDF Downloads(4)
  • Abstract views(233)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return