Citation: Zhi-Yong ZHANG, Zhong-Zhi ZHANG, Yi-Jing LUO, Guang-Qing ZHANG. Theoretical Investigation for Unexpected Transition Metal-π Interaction Enhanced Fluorescence in Cu-π-diborene[J]. Chinese Journal of Structural Chemistry, ;2020, 39(6): 1126-1134. doi: 10.14102/j.cnki.0254-5861.2011-2653 shu

Theoretical Investigation for Unexpected Transition Metal-π Interaction Enhanced Fluorescence in Cu-π-diborene

  • Corresponding author: Zhi-Yong ZHANG, zhangzycup@126.com
  • Received Date: 4 November 2019
    Accepted Date: 16 February 2020

    Fund Project: the National Natural Science Foundation of China 51634008National Science and Technology Major Project 2017ZX05009-004

Figures(5)

  • Unexpected transition metal (TM)-π interaction enhanced fluorescence in Cu-π-diborene complexes is a novel phenomenon compared with other metal enhanced fluorescence. In order to discover the mechanism, theoretical investigation was carried out for Cu-π-diborene as well as diborene. Simulation results show the main decay method in diborene and Cu-π-diborene are internal conversion (IC) and fluorescence (FL), respectively. TM-π interaction leads to larger HOMO-LUMO gap of Cu-π-diborene than that of the free diborene, which results in lower IC rates and makes them smaller than the FL rates. At the same time, ISC rates are always smaller than IC and FL rates, which cause enhanced fluorescence of Cu-π-diborene. More interestingly, even though Cu-π-diborene shows enhanced fluorescence, intersystem crossing (ISC) in Cu-π-diborene is enhanced from diborene. The theoretical analysis shows the competition among IC, FL and ISC is the key factor for TM-π interactions enhanced fluorescence, which also shows that cation-π complexes have potential to be used as luminescent probes.
  • 加载中
    1. [1]

      Bauch, M.; Toma, K.; Toma, M.; Zhang, Q.; Dostalek, J. Plasmon-enhanced fluorescence biosensors: a review. Plasmonics 2014, 4, 781−799.

    2. [2]

      Osawa, M.; Hoshino, M. Molecular Design and Synthesis of Metal Complexes as Emitters for TADF-Type OLEDs. Wiley, Weinheim 2018, p119−176.

    3. [3]

      Hao, J. N.; Yan, B. A. Water-stable lanthanide-functionalized MOF as a highly selective and sensitive fluorescent probe for Cd2+. Chem. Commun. 2015, 36, 7737−7740.

    4. [4]

      Wang, Z.; Wang, C.; Han, Q.; Wang, G.; Zhang, M.; Zhang, J.; Gao, W.; Zheng, H. Metal-enhanced upconversion luminescence of NaYF4: Yb/Er with Ag nanoparticles. Mater. Res. Bull. 2017, 88, 182−187.  doi: 10.1016/j.materresbull.2016.12.030

    5. [5]

      Bissinger, P.; Steffen, A.; Vargas, A.; Dewhurst, R. D.; Damme, A.; Braunschweig, H. Unexpected luminescence behavior of coinage metal π-diborene complexes. Angew. Chem. Int. Edit. 2015, 14, 4362−4366.

    6. [6]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision C. 01, Gaussian, Inc., Wallingford CT 2009.

    7. [7]

      Savarese, M.; Aliberti, A.; De Santo, I.; Battista, E.; Causa, F.; Netti, P. A.; Rega, N. Fluorescence lifetimes and quantum yields of rhodamine derivatives: new insights from theory and experiment. J. Phys. Chem. A 2012, 28, 7491−7497.

    8. [8]

      Ming-Tong, G. S.; Chan, K. T.; Chang, X.; Che, C. M. Theoretical studies on the photophysical properties of luminescent pincer gold(Ⅲ) arylacetylide complexes: the role of π-conjugation at the C-deprotonated [C^N^C] ligand. Chem. Sci. 2015, 5, 3026−3037.

    9. [9]

      Tong, G. S.; Chow, P. K.; To, W. P.; Kwok, W. M.; Che, C. M. A theoretical investigation into the luminescent properties of d8-transition-metal complexes with tetradentate Schiff base ligands. Chemistry 2014, 21, 6433−6443.

    10. [10]

      Brahim, L.; Michel, O. Single-photon sources. Rep. Prog. Phys. 2005, 5, 1129−1179.

    11. [11]

      Liu, Y.; Lin, M.; Zhao, Y. Intersystem crossing rates of isolated fullerenes: theoretical calculations. J. Phys. Chem. A 2017, 5, 1145−1152.

    12. [12]

      Neese, F. The ORCA program system. Wires. Comput. Mol. Sci. 2012, 1, 73−78.

    13. [13]

      Cao, R.; Saracini, C.; Ginsbach, J. W.; Kieber-Emmon, M. T.; Siegler, M. A.; Solomon, E. I.; Fukuzumi, S.; Karlin, K. D. Peroxo and superoxo moieties bound to copper ion: electron-transfer equilibrium with a small reorganization energy. J. Am. Chem. Soc. 2016, 22, 7055−7066.

    14. [14]

      Ray, A.; Santhosh, K.; Bhattacharya, S. Absorption spectrophotometric, fluorescence, transient absorption and quantum chemical investigations on fullerene/phthalocyanine supramolecular complexes. Spectrochim. Acta. A 2011, 5, 1364−1375.

    15. [15]

      Nelsen, S. F.; Blackstock, S. C.; Kim, Y. Estimation of inner shell Marcus terms for amino nitrogen compounds by molecular orbital calculations. J. Am. Chem. Soc. 1987, 3, 677−682.

    16. [16]

      Vaissier, V.; Barnes, P.; Kirkpatrick, J.; Nelson, J. Influence of polar medium on the reorganization energy of charge transfer between dyes in a dye sensitized film. Phys. Chem. Chem. Phys. 2013, 13, 4804−4814.

    17. [17]

      Nguyen, T. P.; Shim, J. H. Hydrostatic pressure effect on charge transport properties of phenacene organic semiconductors. Phys. Chem. Chem. Phys. 2016, 20, 13888−13896.

    18. [18]

      Reimers, J. R. A practical method for the use of curvilinear coordinates in calculations of normal-mode-projected displacements and Duschinsky rotation matrices for large molecules. J. Chem. Phys. 2001, 20, 9103−9109.

    19. [19]

      López-Estrada, O.; Laguna, H. G.; Barrueta-Flores, C.; Amador-Bedolla, C. Reassessment of the four-point approach to the electron-transfer Marcus-Hush theory. ACS. Omega. 2018, 2, 2130−2140.

    20. [20]

      Cui, Y.; Li, P.; Song, C.; Zhang, H. Terminal modulation of D-π-A small molecule for organic photovoltaic materials: a theoretical molecular design. J. Phys. Chem. C 2016, 51, 28939−28950.

    21. [21]

      Mac, M.; Tokarczyk, B.; Uchacz, T.; Danel, A. Charge transfer fluorescence of benzoxazol derivatives: Investigation of solvent effect on fluorescence of these dyes. J. Photoch. Photobio. A 2007, 1, 32−41.

    22. [22]

      Biswas, S.; Pramanik, A.; Sarkar, P. Origin of different photovoltaic activities in regioisomeric small organic molecule solar cells: the intrinsic role of charge transfer processes. J. Phys. Chem. C 2018, 26, 14296−14303.

    23. [23]

      Rajbanshi, B.; Kar, M.; Sarkar, P.; Sarkar, P. Phosphorene quantum dot-fullerene nanocomposites for solar energy conversion: an unexplored inorganic-organic nanohybrid with novel photovoltaic properties. Chem. Phys. Lett. 2017, 685, 16−22.  doi: 10.1016/j.cplett.2017.07.033

    24. [24]

      He, R. X.; Duan, X. H.; Li, X. Y. Quantum chemical study on excited states and electronic coupling matrix element in a catechol-bridge-dicyanoethylene system. J. Phys. Chem. A 2005, 18, 4154−4161.

    25. [25]

      Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2011, 5, 580−592.

    26. [26]

      Huang, R.; Avó, J.; Northey, T.; Chaning-Pearce, E.; Dos Santos, P. L.; Ward, J. S.; Data, P. The contributions of molecular vibrations and higher triplet levels to the intersystem crossing mechanism in metal-free organic emitters. J. Mater. Chem. C 2017, 25, 6269−6280.

    27. [27]

      Zhang, W.; Xu, Y.; Hanif, M.; Zhang, S.; Zhou, J.; Hu, D.; Xie, Z.; Ma, Y. Enhancing fluorescence of naphthalimide derivatives by suppressing the intersystem crossing. J. Phys. Chem. C 2017, 41, 23218−23223.

  • 加载中
    1. [1]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    2. [2]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    3. [3]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    4. [4]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    5. [5]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    6. [6]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    7. [7]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    8. [8]

      Biao HuangTao TangFushou LiuShi-Hui ChenZhi-Ling ZhangMingxi ZhangRan Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694

    9. [9]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    10. [10]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    11. [11]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    12. [12]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    13. [13]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    14. [14]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    15. [15]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    16. [16]

      Jiaojiao LiangYouming PengZhichao XuYufei WangMenglong LiuXin LiuDi HuangYuehua WeiZengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452

    17. [17]

      Xiao YuDongyue CuiMengmeng WangZhaojin WangMengzhu WangDeshuang TuVladimir BregadzeChangsheng LuQiang ZhaoRunfeng ChenHong Yan . Boron cluster-based TADF emitter via through-space charge transfer enabling efficient orange-red electroluminescence. Chinese Chemical Letters, 2025, 36(3): 110520-. doi: 10.1016/j.cclet.2024.110520

    18. [18]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    19. [19]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    20. [20]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

Metrics
  • PDF Downloads(1)
  • Abstract views(327)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return