Citation: Wei SU, Bao-Qu ZHANG, Bing-Hua PENG, Zhao-Feng TANG, Pei-Yuan LI. Synthesis and Anticancer Activity of a New Di-nuclear Ruthenium Arene Compound with Thiosemicarbazones[J]. Chinese Journal of Structural Chemistry, ;2020, 39(6): 1112-1118. doi: 10.14102/j.cnki.0254-5861.2011-2606 shu

Synthesis and Anticancer Activity of a New Di-nuclear Ruthenium Arene Compound with Thiosemicarbazones

  • Corresponding author: Pei-Yuan LI, lipearpear@163.com
  • Received Date: 19 September 2019
    Accepted Date: 13 January 2020

    Fund Project: the National Natural Science Foundation of China 51961009the National Natural Science Foundation of China 21761006Natural Science Foundation of Guangxi Province 2017GXNSFAA198335Natural Science Foundation of Guangxi Province 2018GXNSFAA281345Guangxi Scientific and Technological Development Projects AD17195081"BAGUI Scholar" Program of Guangxi Province, Natural Science Foundation of Guangxi University of Chinese Medicine 2017JQ001Guangxi First-class Discipline: Chinese Materia Medica Scientific Research of Guangxi Education Department [2018] No. 12Research Project of Guangxi First-class Discipline 2019XK135Project of Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine GXZYZZ2019-4

Figures(5)

  • A new di-nuclear ruthenium arene compound containing thiosemicarbazone ligands, [Ru(η6-cymene)(TSC)Cl]2(PF6)2 (2), was synthesized and characterized by 1H NMR, HR-ESI-MS, and elemental analysis. Furthermore, the complete structure of 2 was determined by single-crystal X-ray diffraction analysis. Density functional theory (DFT) calculations with B3LYP functional and LANL2DZ (for Ru)/6-31G* (for other atoms) basis sets were carried out for the reactions involving complexes 1 and 2 in order to understand the formation of the complexes. The in vitro anticancer activities of the compound were investigated against five human cancer cell lines (SGC-7901, CNE-2, HepG2, KB and HeLa), and the IC50 values are 39.5, 45.8, 49.8, 54.5 and 61.8 μM, respectively.
  • 加载中
    1. [1]

      Nagle, A. S.; Khare, S.; Kumar, A. B.; Supek, F.; Buchynskyy, A.; Mathison, C. J. N.; Chennamaneni, N. K.; Pendem, N; Buckner, F. S.; Gelb, M. H.; Molteni, V. Recent developments in drug discovery for leishmaniasis and human african trypanosomiasis. Chem. Rev. 2014, 114, 11305–11347.  doi: 10.1021/cr500365f

    2. [2]

      Stacy, A. E.; Palanimuthu, D.; Bernhardt, P. V.; Kalinowski, D. S.; Jansson, P. J.; Richardson, D. R. Structure–Activity relationships of di-2-pyridylketone, 2-benzoylpyridine, and 2-acetylpyridine thiosemicarbazones for overcoming pgp-Mediated drug resistance. J. Med. Chem. 2016, 59, 8601–8620.  doi: 10.1021/acs.jmedchem.6b01050

    3. [3]

      Qi, J.; Gou, Y.; Zhang, Y.; Yang, K.; Chen, S.; Liu, L.; Wu, X.; Wang, T.; Zhang, W.; Yang, F. Developing anticancer ferric prodrugs based on the N-donor residues of human serum albumin carrier (Ⅱ) A subdomain. J. Med. Chem. 2016, 59, 7497–7511.  doi: 10.1021/acs.jmedchem.6b00509

    4. [4]

      Zaltariov, M. F.; Hammerstad, M.; Arabshahi, H. J.; Jovanović, K.; Richter, K. W.; Cazacu, M.; Shova, S.; Balan, M.; Andersen, N. H.; Radulović, S.; Reynisson, J.; Andersson, K. K.; Arion, V. B. New iminodiacetate–thiosemicarbazone hybrids and their copper(Ⅱ) complexes are potential ribonucleotide reductase R2 inhibitors with high antiproliferative activity. Inorg. Chem. 2017, 56, 3532–3549.  doi: 10.1021/acs.inorgchem.6b03178

    5. [5]

      Pal, I.; Basuli, F.; Mak, T. C. W.; Bhattacharya, S. Synthesis, structure, and properties of a novel heterooctametallic complex containing a cyclic Ru4Ni4 core. Angew. Chem., Int. Ed. 2001, 40, 2923–2925.  doi: 10.1002/1521-3773(20010803)40:15<2923::AID-ANIE2923>3.0.CO;2-J

    6. [6]

      Demoro, B.; Sarniguet, C.; Sánchez-Delgado, R.; Rossi, M.; Liebowitz, D.; Caruso, F.; Olea-Azar, C.; Moreno, V.; Medeiros, A.; Comini, M. A.; Otero, L.; Gambino, D. New organoruthenium complexes with bioactive thiosemicarbazones as co-ligands: potential anti-trypanosomal agents. Dalton Trans. 2012, 41, 1534–1543.  doi: 10.1039/C1DT11519G

    7. [7]

      Adams, M.; Khot, Y.; Li, H.; De Kock, C.; Smith; P. J.; Land, K.; Chibalea, K.; Smith, G. S. The synthesis and antiparasitic activity of aryl- and ferrocenyl-derived thiosemicarbazone Ruthenium(Ⅱ)–arene complexes. Dalton Trans. 2013, 42, 4677–4685.  doi: 10.1039/c3dt32740j

    8. [8]

      Stacy, A. E.; Palanimuthu, D.; Bernhardt, P. V.; Kalinowski, D. S.; Jansson, P. J.; Richardson, D. R. Zinc(Ⅱ)-thiosemicarbazone complexes are localized to the lysosomal compartment where they transmetallate with copper ions to induce cytotoxicity. J. Med. Chem. 2016, 59, 4965–4984.  doi: 10.1021/acs.jmedchem.6b00238

    9. [9]

      Oliveira, Alexandre. A.; Perdigão, G. M. C.; Rodrigues, L. E.; da Silva, J. G.; Souza-Fagundes, E. M.; Takahashi, J. A.; Rocha, W. R.; Beraldo, H. Cytotoxic and antimicrobial effects of Indium(Ⅲ) complexes with 2-acetylpyridine-derived thiosemicarbazones. Dalton Trans. 2017, 46, 918-932.  doi: 10.1039/C6DT03657K

    10. [10]

      King, A. P.; Gellineau, H. A.; Ahn, J. E.; MacMillan, S. N.; Wilson, J. J. Bis(thiosemicarbazone) complexes of cobalt(Ⅲ). synthesis, characterization, and anticancer potential. Inorg. Chem. 2017, 56, 6609–6623.  doi: 10.1021/acs.inorgchem.7b00710

    11. [11]

      Medici, S.; Peana, M.; Nurchi, V. M.; Lachowicz, J. I.; Crisponi, G.; Zoroddu, M. A. Noble metals in medicine: latest advances. Coord. Chem. Rev. 2015, 284, 329-350.  doi: 10.1016/j.ccr.2014.08.002

    12. [12]

      Murray, B. S.; Babak, M. V.; Hartinger, C. G.; Dyson, P. J. The development of RAPTA compounds for the treatment of tumors. Coord. Chem. Rev. 2016, 306, 86–114.  doi: 10.1016/j.ccr.2015.06.014

    13. [13]

      Su, W.; Tang, Z.; Li, P. Development of arene Ruthenium antitumor complexes. Mini-Rev. Med. Chem. 2016, 16, 787-795.  doi: 10.2174/138955751610160503003937

    14. [14]

      Zhao, J.; Li, S.; Wang, X.; Xu, G.; Gou, S. Dinuclear organoruthenium complexes exhibiting antiproliferative activity through DNA damage and a reactive-oxygen-speciesMediated endoplasmic reticulum stress pathway. Inorg. Chem. 2019, 58, 2208-2217.  doi: 10.1021/acs.inorgchem.8b03447

    15. [15]

      Acharya, S.; Maji, M.; Ruturaj.; Purkait, K.; Gupta, A.; Mukherjee, A. Synthesis, structure, stability, and inhibition of tubulin polymerization by Ru(Ⅱ)−p‑cymene complexes of trimethoxyaniline based schiff bases. Inorg. Chem. 2019, 58, 9213−9224.  doi: 10.1021/acs.inorgchem.9b00853

    16. [16]

      Morris, R. E.; Aird, R. E.; Murdoch, P. del S.; Chen, H.; Cummings, J.; Hughes, N. D.; Parsons, S.; Parkin, A.; Boyd, G.; Jodrell, D. I.; Sadler, P. J. Inhibition of cancer cell growth by Ruthenium(Ⅱ) arene complexes. J. Med. Chem. 2001, 44, 3616-3621.  doi: 10.1021/jm010051m

    17. [17]

      Scolaro, C.; Bergamo, A, ; Brescacin, L.; Delfino, R.; Cocchietto, M.; Laurenczy, G.; Geldbach, T. J.; Sava, G.; Dyson, P. J. In vitro and in vivo evaluation of Ruthenium(Ⅱ)-arene PTA complexes. J. Med. Chem. 2005, 48, 4161–4171.  doi: 10.1021/jm050015d

    18. [18]

      Meng, T.; Qin, Q. P.; Chen, Z. L.; Zou, H. H.; Wang, K.; Liang, F. P. Development of arene Ruthenium antitumor complexes. Dalton Trans. 2019, 48, 5352-5360.  doi: 10.1039/C9DT00866G

    19. [19]

      Beckford, F.; Dourth, D.; Shaloski Jr, M.; Didion, J.; Thessing, J.; Woods, J.; Crowell, V.; Gerasimchuk, N.; Gonzalez-Sarrías, A.; Seeram, N. P. Dinuclear organoruthenium complexes exhibiting antiproliferative activity through DNA damage and a reactive-oxygen-speciesMediated endoplasmic reticulum stress pathway. J. Inorg. Biochem. 2011, 105, 1019–1029.  doi: 10.1016/j.jinorgbio.2011.04.008

    20. [20]

      Adams, M.; Li, Y.; Khot, H.; De Kock, C.; Smith, P. J.; Land, K.; Chibalea, K.; Smith, G. S. The synthesis and antiparasitic activity of aryl- and ferrocenyl-derived thiosemicarbazone ruthenium(Ⅱ)–arene complexes. Dalton Trans. 2013, 42, 4677–4685.  doi: 10.1039/c3dt32740j

    21. [21]

      Su, W.; Qian, Q.; Li, P.; Lei, X.; Xiao, Q.; Huang, S.; Huang, C.; Cui, J. Synthesis, characterization and anticancer activity of a series of curcuminoids and their half-sandwich ruthenium(Ⅱ) complexes. Inorg. Chem., 2013, 52, 12440–12449.  doi: 10.1021/ic401362s

    22. [22]

      Su, W.; Tang, Z.; Xiao, Q.; Li, P.; Qian, Q.; Lei, X.; Huang, S.; Peng, B.; Cui, J.; Huang, C. Synthesis, characterization, and anticancer activity of a series of ketone‑N4‑substituted thiosemicarbazones and their Ruthenium(Ⅱ) arene complexes. J. Organometal. Chem. 2015, 783, 10–16.  doi: 10.1016/j.jorganchem.2014.12.041

    23. [23]

      Gatti, A.; Habtemariam, A.; Romero-Canelon, I.; Song, J. I.; Heer, Bindy.; Clarkson, G. J.; Rogolino, D.; Sadler, P. J.; Carcelli, M. Half-sandwich arene Ruthenium(Ⅱ) and Osmium(Ⅱ) thiosemicarbazone complexes: Solution behavior and antiproliferative activity. Organometallics, 2018, 37, 891-899.  doi: 10.1021/acs.organomet.7b00875

    24. [24]

      Demoro, B.; Sarniguet, C.; Sanchez-Delgado, R.; Rossi, M.; Liebowitz, D.; Caruso, F.; Olea-Azar, C.; Moreno, V.; Medeiros, A.; Comini, M. A.; Otero, L.; Gambino, D. New organoruthenium complexes with bioactive thiosemicarbazones as co-ligands: potential anti-trypanosomal agents. Dalton Trans. 2012, 41, 1534–1543.  doi: 10.1039/C1DT11519G

    25. [25]

      Demoro, B.; de Almeida, R. F. M.; Marques, F.; Matos, C. P. L.; Otero.; Pessoa, J. C.; Santos, I.; Rodríguez, A.; Moreno, V.; Lorenzo, J.; Gambino, D.; Toma, A. I. Screening organometallic binuclear thiosemicarbazone ruthenium complexes as potential anti-tumour agents: cytotoxic activity and human serum albumin binding mechanism. Dalton Trans. 2013, 42, 7131–7146.  doi: 10.1039/c3dt00028a

    26. [26]

      Su, W.; Tang, Z.; Li, P.; Wang, G.; Xiao, Q.; Li, Y.; Huang, S.; Gu, Y.; Lai, Z.; Zhang, Y. New dinuclear ruthenium arene complexes containing thiosemicarbazone ligands: synthesis, structure and cytotoxic studies. Dalton Trans. 2016, 45, 19329–19340.  doi: 10.1039/C6DT03306G

    27. [27]

      SAINT Software Reference Manual, Bruker AXS, Madison, WI, 1998.

    28. [28]

      Sheldrick, G. M. Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr. Sect. 1990, A46, 467.

    29. [29]

      Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Solution, University of Göttingen, Göttingen, Germany, 1997.

    30. [30]

      Crystal data for 2. formula (C40H52N6O2P2F12Ru2S2), Mr = 1205.0785, crystal sysem: trigonal; space group: R-3; a = 34.752(3) Å, b = 34.752(3) Å, c  = 11.9575(13) Å; α = 90.00°, β = 90.00°, γ = 120.00°; V  = 12506(2) Å3; Z = 18, Dc = 1.402 Mg/m3, μ  = 0.748 mm‑1; F(000) = 5328; Rint = 0.0464, reflns collected = 20071, reflns ind = 5061, GOOF (S) = 1.063; final R indices (I ≥ 2σ (I)) R1 = 0.0668, wR2 = 0.2005; final R indices (all data) R1=0.0904, wR2 = 0.2144.

    31. [31]

      Frisch, M. J. T. G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A. 1Wallingford CT; 2009

  • 加载中
    1. [1]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    2. [2]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    4. [4]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    5. [5]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    6. [6]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    7. [7]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    8. [8]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2023.100393

    9. [9]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    10. [10]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

Metrics
  • PDF Downloads(3)
  • Abstract views(222)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return