Citation: Ye-Kun LIU, Xin-Hui ZHOU. Synthesis, Structure and Property of a Metal-organic Framework Based on 9-(2, 6-Dicarboxy-pyridin-4-yl)-9H-carbazole-3, 6-dicarboxylic Acid[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 559-566. doi: 10.14102/j.cnki.0254-5861.2011-2586 shu

Synthesis, Structure and Property of a Metal-organic Framework Based on 9-(2, 6-Dicarboxy-pyridin-4-yl)-9H-carbazole-3, 6-dicarboxylic Acid

  • Corresponding author: Xin-Hui ZHOU, iamxhzhou@njupt.edu.cn
  • Received Date: 29 August 2019
    Accepted Date: 26 November 2019

    Fund Project: the National Natural Science Foundation of China 21973047

Figures(4)

  • A new terbium(Ⅲ) metal-organic framework [Tb(HL)(H2O)] (TbL) based on a new synthetic ligand 9-(2, 6-dicarboxy-pyridin-4-yl)-9H-carbazole-3, 6-dicarboxylic acid (H4L) has been synthesized under solvothermal conditions. Its structure was determined by single-crystal X-ray diffraction analysis, and further characterized by powder X-ray diffraction analysis and IR spectra. The title complex crystallizes in trigonal space group P3212 with a = b = 13.6491(11), c = 32.345(3) Å, γ = 120°, V = 5218.5(10) Å3, C42H20N4O17Tb2, Mr = 1170.46, Dc = 1.117 g/cm3, μ(Mo) = 2.065 mm-1, F(000) = 1698, GOF = 1.054, Z = 3, the final R = 0.0384 and wR = 0.0771 for 5223 observed reflections (I > 2σ(I)). In TbL, the tri-bridged binuclear Tb2 units are bibridged by two carbazole-3, 6-dicarboxylate moieties to lead to the homochiral parallel arranged helical chains, which are further connected by 2, 6-pyridinedicarboxylate moieties to produce the chiral neutral 3D framework. There are there kinds of 1D channels in the framework with the channel space occupying 53.3% of the total volume. TbL exhibits intense characteristic green emission of Tb3+ ions.
  • 加载中
    1. [1]

      Dong, R. H.; Zhang, Z. T.; Tranca, D. C.; Zhou, S. Q.; Wang, M. C.; Adler, P.; Liao, Z. Q.; Liu, F.; Sun, Y.; Shi, W. J.; Zhang, Z.; Zschech, E.; Mannsfeld, S. C. B.; Felser, C.; Feng, X. L. A coronene-based semiconducting two-dimensional metal-organic framework with ferromagnetic behavior. Nat. Commun. 2018, 9, 2637(1–9).

    2. [2]

      Li, L.; Zhu, Y. L.; Zhou, X. H.; Brites, C. D. S.; Ananias, D.; Lin, Z.; Paz, F. A. A.; Rocha, J.; Huang, W.; Carlos, L. D. Visible-light excited luminescent thermometer based on single lanthanide organic frameworks. Adv. Funct. Mater. 2016, 26, 8677–8684.  doi: 10.1002/adfm.201603179

    3. [3]

      Li, L.; Cheng, J. H.; Liu, Z. P.; Song, L.; You, Y. J.; Zhou, X. H.; Huang, W. Ratiometric luminescent sensor of picric acid based on the dual-emission mixed-lanthanide coordination polymer. ACS Appl. Mater. Inter. 2018, 10, 44109–44115.  doi: 10.1021/acsami.8b13719

    4. [4]

      DeGayner, J. A.; Jeon, I. R.; Sun, L.; Dinca, M.; Harris, T. D. 2D conductive iron-quinoid magnets ordering up to Tc = 105 K via heterogenous redox chemistry. J. Am. Chem. Soc. 2017, 139, 4175–4184.  doi: 10.1021/jacs.7b00705

    5. [5]

      Zhu, R. M.; Ding, J. W.; Jin, L.; Pang, H. Interpenetrated structures appeared in supramolecular cages, MOFs, COFs. Coord. Chem. Rev. 2019, 389, 119–140.  doi: 10.1016/j.ccr.2019.03.002

    6. [6]

      Guntern, Y. T.; Pankhurst, J. R.; Vavra, J.; Mensi, M.; Mantella, V.; Schouwink, P.; Buonsanti, R. Nanocrystal/metal-organic framework hybrids as electrocatalytic platforms for CO2 conversion. Angew. Chem. Int. Ed. 2019, 58, 12632–12639.  doi: 10.1002/anie.201905172

    7. [7]

      Kim, H.; Yang, S.; Rao, S. R.; Narayanan, S.; Kapustin, E. A.; Furukawa, H.; Umans, A. S.; Yaghi O. M.; Wang, E. N. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 2017, 356, 430–432.  doi: 10.1126/science.aam8743

    8. [8]

      Zhang, J. P.; Liao, P. Q.; Zhou, H. L.; Lin, R. B.; Chen, X. M. Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers. Chem. Soc. Rev. 2014, 43, 5789–5814.  doi: 10.1039/C4CS00129J

    9. [9]

      Pang, J. D.; Liu, C. P.; Huang, Y. G.; Wu, M. Y.; Jiang, F. L.; Yuan, D. Q.; Hu, F. L.; Su, K. Z.; Liu, G. L.; Hong, M. C. Visualizing the dynamics of temperatureand solvent-responsive soft crystals. Angew. Chem. Int. Ed. 2016, 55, 7478–7482.  doi: 10.1002/anie.201603030

    10. [10]

      Yuan, S.; Qin, J. S.; Su, J.; Li, B.; Li, J. L.; Chen, W. M.; Drake, H. F.; Zhang, P.; Yuan, D. Q.; Zuo, J. L.; Zhou, H. C. Sequential transformation of zirconium(Ⅳ)-MOFs into heterobimetallic MOFs bearing magnetic anisotropic cobalt(Ⅱ) centers. Angew. Chem. Int. Ed. 2018, 57, 12578–12583.  doi: 10.1002/anie.201808568

    11. [11]

      Schoedel, A.; Li, M.; Li, D.; OʼKeeffe, M.; Yaghi, O. M. Structures of metal-organic frameworks with rod secondary building units. Chem. Rev. 2016, 116, 12466–12535.  doi: 10.1021/acs.chemrev.6b00346

    12. [12]

      Xu, W. J.; Li, P. F.; Tang, Y. Y.; Zhang, W. X.; Xiong, R. G.; Chen, X. M. A molecular perovskite with switchable coordination bonds for high-temperature multiaxial ferroelectrics. J. Am. Chem. Soc. 2017, 139, 6369–6375.  doi: 10.1021/jacs.7b01334

    13. [13]

      Li, P. F.; Liao, W. Q.; Tang, Y. Y.; Ye, H. Y.; Zhang, Y.; Xiong, R. G. Unprecedented ferroelectric-antiferroelectric-paraelectric phase transitions discovered in an organic-inorganic hybrid perovskite. J. Am. Chem. Soc. 2017, 139, 8752–8757.  doi: 10.1021/jacs.7b04693

    14. [14]

      Wang, J.; Gao, L. L.; Zhang, J.; Zhao, L.; Wang, X. Q.; Niu, X. Y.; Fan, L. M.; Hu, T. P. Syntheses, gas adsorption, and sensing properties of solvent-controlled Zn(Ⅱ) pseudo-supramolecular isomers and Pb(Ⅱ) supramolecular isomers. Cryst. Growth & Des. 2019, 19, 630–637.

    15. [15]

      Peng, C. D.; Song, X. L.; Yin, J. L.; Zhang, G. Y.; Fei, H. H. Intrinsic white-light-emitting metal-organic frameworks with structurally deformable secondary building units. Angew. Chem. Int. Ed. 2019, 58, 7818–7822.  doi: 10.1002/anie.201903665

    16. [16]

      Giovannantonio, M. D.; Eimre, K.; Yakutovich, A. V.; Chen, Q.; Mishra, S.; Urgel, J. I.; Pignedoli, C. A.; Ruffieux, P.; Müllen, K.; Narita, A.; Fasel, R. On-surface synthesis of antiaromatic and open-shell indeno[2, 1-b]fluorene polymers and their lateral fusion into porous ribbons. J. Am. Chem. Soc. 2019, 141, 12346–12354.  doi: 10.1021/jacs.9b05335

    17. [17]

      Gumyusenge, A.; Tran, D. T.; Luo, X. Y.; Pitch, G. M.; Zhao, Y.; Jenkins, K. A.; Dunn, T. J.; Ayzner, A. L.; Savoie, B. M.; Mei, J. G. Semiconducting polymer blends that exhibit stable charge transport at high temperatures. Science 2018, 362, 1131–1134.  doi: 10.1126/science.aau0759

    18. [18]

      Chen, Q. Q.; Cheng, J. H.; Wang, J.; Li, L.; Liu, Z. P.; Zhou, X. H.; You, Y. J.; Huang, W. A fluorescent Eu(Ⅲ) MOF for highly selective and sensitive sensing of picric acid. Sci. China Chem. 2019, 62, 205–211.

    19. [19]

      Zhou, X. H.; Cheng, J. H.; Li, L.; Chen, Q.; You, Y. J.; Xiao, H. P.; Huang, W. A europium(Ⅲ) metal-organic framework as ratiometric turn-on luminescent sensor for Al3+ ions. Sci. China Mater. 2018, 61, 752–757.  doi: 10.1007/s40843-017-9186-3

    20. [20]

      Zhu, Y. L.; Zhou, X. H.; Li, L.; You, Y. J.; Huang, W. A water-stable metal-organic framework as a luminescent Fe3+ sensor under weak acidic and weak basic conditions. Sci. China Chem. 2017, 60, 1581–1587.  doi: 10.1007/s11426-017-9145-3

    21. [21]

      Zhou, X. H.; Zhu, Y. L.; Li, L.; Huang, W. A 2D metal-organic framework based on 9-(pyridin-4-yl)-9H-carbazole-3, 6-dicarboxylic acid: synthesis, structure and properties. Chin. J. Chem. 2017, 35, 1869–1874.  doi: 10.1002/cjoc.201700310

    22. [22]

      Zhou, X. H.; Chen, Q.; Li, L.; Yang, T.; Wang, J.; Huang, W. Three alkaline earth metal-organic frameworks based on fluorene-containing carboxylates: syntheses, structures and properties. Sci. China Chem. 2017, 60, 115–121.  doi: 10.1007/s11426-016-0291-3

    23. [23]

      Li, L.; Chen, Q.; Niu, Z. G.; Zhou, X. H.; Yang, T.; Huang, W. Lanthanide metal-organic frameworks assembled from a fluorene-based ligand: selective sensing of Pb2+ and Fe3+ ions. J. Mater. Chem. C 2016, 4, 1900–1905.  doi: 10.1039/C5TC04320D

    24. [24]

      Li, L.; Wang, Z. H.; Chen, Q.; Zhou, X. H.; Yang, T.; Zhao, Q.; Huang, W. Coordination polymers assembled from semirigid fluorene-based ligand: a couple of enantiomers, J. Solid State Chem. 2015, 231, 47–52.  doi: 10.1016/j.jssc.2015.08.003

    25. [25]

      Li, A.; Li, L.; Lin, Z.; Song, L.; Wang, Z. H.; Chen, Q.; Yang, T.; Zhou, X. H.; Xiao, H. P.; Yin, X. J. Guest-induced reversible structural transitions and concomitant on/off luminescent switch of an Eu(Ⅲ) metal-organic framework and its application in detecting picric acid. New J. Chem. 2015, 39, 2289–2295.  doi: 10.1039/C4NJ01946F

    26. [26]

      Zhou, X. H.; Li, L.; Li, A.; Yang, T.; Huang, W. Three-dimensional lanthanide metal-organic frameworks with the fluorene-based carboxylate ligands: syntheses, structures, and properties. Inorg. Chim. Acta 2014, 413, 38–44.  doi: 10.1016/j.ica.2013.12.037

    27. [27]

      Li, L.; Li, A.; Song, L.; Wang, Z. H.; Zhou, X. H.; Yang, T.; Huang, W. Synthesis, structure and properties of a tetranuclear europium(Ⅲ) complex based on 9, 9-dimethylfluorene-2, 7-diphosphonic acid. J. Mol. Struct. 2014, 1067, 37–42.  doi: 10.1016/j.molstruc.2014.03.015

    28. [28]

      Li, A.; Li, L.; Yang, T.; Zhou, X. H. A three-dimensional porous metal-organic framework based on 9, 9-dimethylfluorene-2, 7-dicarboxylic acid (H2MFDA): {[Tb2(MFDA)3(DMF)2(H2O)3]·(H2O)3(DMF)6}n. Russ. J. Coord. Chem. 2014, 40, 837–841.  doi: 10.1134/S1070328414110037

    29. [29]

      Zhou, X. H.; Li, H. H.; Xiao, H. P.; Li, L.; Zhao, Q.; Yang, T.; Zuo, J. L.; Huang, W. A microporous luminescent europium metal-organic framework for nitro explosive sensing. Dalton Trans. 2013, 42, 5718–5723.  doi: 10.1039/c3dt00055a

    30. [30]

      Zhou, X. H.; Li, L.; Li, H. H.; Li, A.; Yang, T.; Huang, W. A flexible Eu(Ⅲ)-based metal-organic framework: turn-off luminescent sensor for the detection of Fe(Ⅲ) and picric acid. Dalton Trans. 2013, 42, 12403–12409.  doi: 10.1039/c3dt51081f

    31. [31]

      Li, H. Y.; Wei, Y. L.; Dong, X. Y.; Zang, S. Q.; Mak, T. C. W. Novel Tb-MOF embedded with viologen species for multi-photofunctionality: photochromism, photomodulated fluorescence, and luminescent pH sensing. Chem. Mater. 2015, 27, 41327–1331.

    32. [32]

      Rinehart, J. D.; Fang, M.; Evans, W. J.; Long, J. R. A N23– radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K. J. Am. Chem. Soc. 2011, 122, 14236–14239.

    33. [33]

      Wang, H. S.; Chen, Y.; Hu, Z. B.; Yin, C. L.; Zhang, Z. C.; Pan, Z. Q. Modulation of the directions of the anisotropic axes of Dy ions through utilizing two kinds of organic ligands or replacing Dy ions by Fe ions. CrystEngComm. 2019, 21, 5429–5439.  doi: 10.1039/C9CE00894B

    34. [34]

      Yin, C. L.; Hu, Z. B.; Long, Q. Q.; Wang, H. S.; Li, J.; Song, Y.; Zhang, Z. C.; Zhang, Y. Q.; Pan, Z. Q. Single molecule magnet behaviors of Zn4Ln2 (Ln = Dy, Tb) complexes with multidentate organic ligands formed by absorption of CO2 in air through in situ reactions. Dalton Trans. 2019, 48, 512–522.  doi: 10.1039/C8DT03849J

    35. [35]

      Chen, Y.; Long, Q. Q.; Hu, Z. B.; Wang, H. S.; Huang, Z. Y.; Chen, W.; Song, Y.; Zhang, Z. C.; Yang, F. J. Synthesis, crystal structures and magnetic properties of a series of pentanuclear heterometallic [Cu3Ln2] (Ln = Ho, Dy, and Gd) complexes containing mixed organic ligands. New J. Chem. 2019, 43, 8101–8108.  doi: 10.1039/C9NJ00892F

    36. [36]

      Chessa, G.; Canovese, L.; Visentin, F.; Santo, C.; Seraglia, R. Synthesis of poly(pyridylthioether) dendrimers incorporating a Fe2(CO)6 cluster core. Tetrahedron 2005, 61, 1755–1763.  doi: 10.1016/j.tet.2004.12.020

    37. [37]

      Kretzschmar, A.; Patze, C.; Schwaebel, S. T.; Bunz, U. H. F. Development of thermally activated delayed fluorescence materials with shortened emissive lifetimes. J. Org. Chem. 2015, 80, 9126–9131.  doi: 10.1021/acs.joc.5b01496

    38. [38]

      Sheldrick, G. M. SADABS, an empirical absorption correction program. Bruker Analytical X-ray Systems, Madison, WI 1996.

    39. [39]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.

    40. [40]

      Spek, A. L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst. 2015, C71, 9–18.

    41. [41]

      Li, R. F.; Zhu, X. X.; Liu, X. F.; Feng, X.; Wang, L. Y. Synthesis, crystal structure and fluorescence properties of a terbium(Ⅲ) complex with biphenyl-2, 3, 3΄, 5΄-tetracarboxylic acid. Chin. J. Struct. Chem. 2019, 38, 985–990.

    42. [42]

      Han, C. B.; Wang, Y. L.; Liu, Q. Y. Crystal structure and magnetic properties of a dinuclear terbium compound Tb2(μ2-anthc)4(anthc)2(1, 10-phen)2. Chin. J. Struct. Chem. 2017, 36, 705–710.

    43. [43]

      Spek, A. L. Structure validation in chemical crystallography. Acta Cryst. 2009, D65, 148–155.

  • 加载中
    1. [1]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    2. [2]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    3. [3]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    4. [4]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    5. [5]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    6. [6]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    7. [7]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    8. [8]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    9. [9]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    10. [10]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    11. [11]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    12. [12]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    13. [13]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    14. [14]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    15. [15]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    16. [16]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    17. [17]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    18. [18]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    19. [19]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    20. [20]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

Metrics
  • PDF Downloads(2)
  • Abstract views(208)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return