Citation: Li YAN, Wei LIU, Mi-Jia WANG, Yue XU, Ke-Zhuo SHI. Synthesis, Characterization, Oxygen Respiratory, Antibacterial Activity, and Photoluminescent Property Studies of One Novel Complex with Schiff-base Ligand[J]. Chinese Journal of Structural Chemistry, ;2020, 39(5): 895-900. doi: 10.14102/j.cnki.0254-5861.2011-2585 shu

Synthesis, Characterization, Oxygen Respiratory, Antibacterial Activity, and Photoluminescent Property Studies of One Novel Complex with Schiff-base Ligand

  • Corresponding author: Li YAN, yanli820618@163.com
  • Received Date: 28 August 2019
    Accepted Date: 17 December 2019

    Fund Project: the National Natural Science Foundation of China 21878120

Figures(6)

  • We have synthesized one novel Schiff-base ligand by modifying the aromatic aldehyde: H2L1 (H2L1 = N, N'-bis(2-oxy-acetate-3-methoxyl)benzylpropylene-ethanediamine). [Co(Ⅱ)L1]2·2EtOH (1) was prepared by the reaction between H2L1 and CoCl2·6H2O in the solvent of C2H5OH. The title compound was structurally characterized by elemental analysis, IR, H NMR and single-crystal X-ray diffraction. Complex 1 crystallizes in monoclinic, space group C2/c with a = 29.472(3), b = 13.4842(13), c = 15.1848(15) Å, β = 115.626(1)°, V = 5441.0(9) Å3, C28H22CoN2O8.50, Mr = 581.41, Dc = 1.420 g/cm3, μ(Mo) = 0.685 mm-1, F(000) = 2392, Z = 8, the final R = 0.0541 and wR = 0.1565 (I > 2σ(I)). The Co(Ⅱ) atom is hexa-coordinated, furnishing a triangular prism geometry. It is interesting that the H-bond intersections formed a one-dimensional chain structure. In this paper, we research the synthesis, characterization, oxygen respiratory, antibacterial activity, and photoluminescent property of complex 1.
  • 加载中
    1. [1]

      Zhang, X.; Li, F. R.; Huang, M.; Zhang, H.; Zhang, S. Y. Syntheses, crystal structures and antibacterial activities of Schiff base of nickel(Ⅱ) and copper(Ⅱ) complexes. Chin. J. Struct. Chem. 2016, 35, 150–1509.

    2. [2]

      Suen, M. C.; Keng, T. C.; Wang, J. C. One-dimensional structures of zinc(Ⅱ) and cobalt(Ⅱ) coordination complexes [Zn(NCS)2(PPz)] n and [CoCl2(PPz)]n (PPz = piperazine). Polyhedron 2002, 21, 2705–2710.  doi: 10.1016/S0277-5387(02)01284-6

    3. [3]

      Lian, Q. Y.; Hu, H. N.; Li, C. H.; Li, D. P.; Jiao, X. Y.; Li, Y. X. A new tetranuclear cubane-like Ni(Ⅱ) complex based on Schiff-base ligand: synthesis, crystal structure and magnetic properties. Chin. J. Struct. Chem. 2017, 36, 273–279.

    4. [4]

      Biswas, A.; Drew, M. G. B.; Ghosh, A. Nickel(Ⅱ) and copper(Ⅱ) complexes of unsymmetrical tetradentate reduced Schiff base ligands. Polyhedron 2010, 29, 1029–1034.  doi: 10.1016/j.poly.2009.12.006

    5. [5]

      Li, F. R.; Zhang, X.; Wang, D. D.; Xue, Z. N.; Ma, Y. K. Syntheses, crystal structures and antibacterial activities of Schiff base ligand and its nickel(Ⅱ) complex. Chin. J. Struct. Chem. 2014, 33, 1367–1374.

    6. [6]

      Wu, J. Q.; Chen, X. H.; Cai, B. Q.; Xie, Y. P. Syntheses and crystal structures of nickel(Ⅱ) and copper(Ⅱ) complexes with Schiff base ligand of 5-chlorosalicylaldehyde. Chin. J. Inorg. Chem. 2012, 28, 201–206.

    7. [7]

      Appleton, T. G. Oxygen uptake by a cobalt(Ⅱ) complex. J. Chem. Educ. 1977, 54, 443–444.  doi: 10.1021/ed054p443

    8. [8]

      Ochiai, E. I. A laboratory program for bioinorganic chemistry. J. Chem. Educ. 1973, 50, 610–611.  doi: 10.1021/ed050p610

    9. [9]

      Li, X. Y.; Sun, H. J.; Li, S. L.; Cui, X. G.; Liu, D. X. Synthesis, characterization and oxygenation thermodynamics of two cobalt Schiff base complexes. Chin. J. Inorg. Chem. 1994, 10, 311–316.

    10. [10]

      Sheldrick, G. M. SHELXS 97, Program for the Solution of Crystal Structure. University of Göttingen, Germany 1997.

    11. [11]

      Sheldrick, G. M. SHELXL 97, Program for the Refinement of Crystal Structure. University of Göttingen, Germany 1997.

    12. [12]

      Agustin, D.; Rima, G.; Gornitzka, H.; Barrau, J. Transition metal complexes of (Schiff base) divalent group 14 element species [(salen)M]n = M'(CO)6–n Eur. J. Inorg. Chem. 2000, 4, 693–702.

    13. [13]

      Paredes-Garcia, V.; Latorre, R. O.; Spodine, E. Electronic and magnetic properties of iron(Ⅲ) dinuclear complexes with carboxylate bridges. Polyhedron 2004, 23, 1869–1876.  doi: 10.1016/j.poly.2004.03.024

    14. [14]

      Boca, R.; Elias, H.; Haase, W. Spectroscopic and magnetic properties and structure of a five-coordinate, O2-binding cobalt(Ⅱ) Schiff base complex and of the copper(Ⅱ) analogue. Inorg. Chim. Acta 1998, 278, 127–135.  doi: 10.1016/S0020-1693(97)06175-6

    15. [15]

      Sen, S.; Talukder, P.; Dey, S. K.; Mitra, S.; Rosair, G.; Hughes, D. L.; Yap, G. P. A.; Pilet, G.; Gramlich, V.; Matsushita, T. Ligating properties of a potentially tetradentate Schiff base [(CH3)2NCH2CH2NCHC6H3(OH)(OMe)] with zinc(Ⅱ), cadmium(Ⅱ), cobalt(Ⅱ), cobalt(Ⅲ) and manganese(Ⅲ) ions: synthesis and structural studies. Dalton. Trans. 2006, 1758–1767.

    16. [16]

      Herchel, R.; Boča, R. Magnetic ordering in a mononuclear cobalt(Ⅱ) complex containing a Schiff-base pentadentate ligand. Dalton. Trans. 2005, 1352–1353.

  • 加载中
    1. [1]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    4. [4]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    5. [5]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    6. [6]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    7. [7]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    8. [8]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    9. [9]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    10. [10]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    11. [11]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    12. [12]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    13. [13]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    14. [14]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    15. [15]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    16. [16]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    17. [17]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    18. [18]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    19. [19]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    20. [20]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

Metrics
  • PDF Downloads(3)
  • Abstract views(214)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return