Citation: Jun-Yu ZHANG, Hong-Gang LIAO, Shi-Gang SUN. Construction of 1D/1D WO3 Nanorod/TiO2 Nanobelt Hybrid Heterostructure for Photocatalytic Application[J]. Chinese Journal of Structural Chemistry, ;2020, 39(6): 1019-1028. doi: 10.14102/j.cnki.0254-5861.2011-2553 shu

Construction of 1D/1D WO3 Nanorod/TiO2 Nanobelt Hybrid Heterostructure for Photocatalytic Application

  • Corresponding author: Hong-Gang LIAO, hgliao@xmu.edu.cn Shi-Gang SUN, sgsun@xmu.edu.cn
  • Received Date: 29 July 2019
    Accepted Date: 5 November 2019

    Fund Project: the National Natural Science Foundation of China 21673198the National Natural Science Foundation of China 21373008the National Natural Science Foundation of China 21621091

Figures(11)

  • In this work, well-defined 1D/1D WO3 nanorod/TiO2 nanobelt (WNR/TNB) hybrid heterostructure was fabricated by a simple electrostatic self-assembly method. The structure-property correlation was clarified by characterizing the crystal phases, morphologies, optical properties, photoluminescence and photocatalytic performances of the WNR/TNB heterostructures. It was demonstrated that photocatalytic performances of WNR/TNB heterostructure toward mineralization was superior to blank TNB, WNR and randomly mixed counterparts under simulated solar light irradiation, owing predominantly to the intimate interfacial contact between WNR and TNB, forming intimately integrated heterojunction, which promotes the spatial charge carriers transfer and electron relay, hence prolonging the lifetime of photogenerated electron-hole pairs. Moreover, photocatalytic mechanism was elucidated. It is anticipated that our work would provide an alternative strategy to construct diverse heterostructured photocatalysts for solar energy conversion.
  • 加载中
    1. [1]

      Liu, C.; Tang, J.; Chen, H. M.; Liu, B.; Yang, P. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano. Lett. 2013, 13, 2989−2992.  doi: 10.1021/nl401615t

    2. [2]

      Dasgupta, N. P.; Sun, J.; Liu, C.; Brittman, S.; Andrews, S. S.; Lim, J.; Gao, H.; Yan, R.; Pang, P. 25th anniversary article: semiconductor nanowires-synthesis, characterization, and applications. Adv. Mater. 2014, 26, 2137−2184.  doi: 10.1002/adma.201305929

    3. [3]

      Tian, J.; Zhao, Z.; Kumar, A.; Boughton, R. I.; Liu, H. Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem. Soc. Rev. 2014, 43 6920−6937.

    4. [4]

      Wang, X.; Li, Z.; Shi, J.; Yu, Y. One-dimensional titanium dioxide nanomaterials: nanowires, nanorods and nanobelts. Chem. Rev. 2014, 114, 9346−9384.  doi: 10.1021/cr400633s

    5. [5]

      Zhao, Z.; Sang, Y.; Cabot, A.; Liu, H. structure, synthesis, and applications of TiO2 nanobelts. Adv. Mater. 2015, 27, 2557−2582.  doi: 10.1002/adma.201405589

    6. [6]

      Tian, J.; Leng, Y.; Zhao, Z.; Xia, Y.; Sang, Y.; Hao, P.; Zhan, J.; Li, M.; Liu, H. Carbon quantumdots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Nano. Energy 2015, 11, 419−427.  doi: 10.1016/j.nanoen.2014.10.025

    7. [7]

      Jiang, T.; Jia, C.; Zhang, L.; He, S.; Sang, Y.; Li, H.; Li, Y.; Xu, X.; Liu, H. Gold and gold-palladium alloy nanoparticles on heterostructured TiO2 nanobelts as plasmonic photocatalysts for benzyl alcohol oxidation. Nanoscale 2015, 7, 209−217.  doi: 10.1039/C4NR05905K

    8. [8]

      Lai, L. L.; W, J. M. A facile solution approach to W, N co-doped TiO2 nanobelt thin films with high photocatalytic activity. J. Mater. Chem. A 2015, 3, 15863−15868.  doi: 10.1039/C5TA03918E

    9. [9]

      Logar, M.; Bračko, I.; Potočnik, A.; Jančar, B. Cu and CuO/titanate nanobelt based network assemblies for enhanced visible light photocatalysis. Langmuir 2014, 30, 4852−4862.  doi: 10.1021/la5008704

    10. [10]

      Zhou, W.; Yin, Z.; Du, Y.; Huang, X.; Zeng, Z.; Fan, Z.; Liu, H.; Wang, J.; Zhang, H. Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 2013, 9, 140−147.  doi: 10.1002/smll.201201161

    11. [11]

      Zhao, Z.; Tian, J.; Wang, D.; Kang, X.; Sang, Y.; Liu, H.; Wang, J.; Chen, S.; Boughton, R. I.; Jiang, H. UV-visible-light-activated photocatalysts based on Bi2O3/Bi4Ti3O12/TiO2 double-heterostructured TiO2 nanobelts. J. Mater. Chem. 2012, 22, 23395−23403.  doi: 10.1039/c2jm34580c

    12. [12]

      Chen, G.; Ji, S.; Sang, Y.; Chang, S.; Wang, Y.; Hao, P.; Claverie, J.; Liu, H.; Yu, G. Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity. Nanoscale 2015, 7, 3117−3125.  doi: 10.1039/C4NR05749J

    13. [13]

      Zhou, W. J.; Leng, Y. H.; Hou, D. M.; Li, H. D.; Li, L. G.; Li, G. Q.; Liu. H.; Chen, S. W. Phase transformation and enhanced photocatalytic activity of S-doped Ag2O/TiO2 heterostructured nanobelts. Nanoscale 2014, 6, 4698−4704.  doi: 10.1039/C3NR06565K

    14. [14]

      Su, D.; Wang, J.; Tang, Y.; Liu, C.; Liu, L.; Han, X. Constructing WO3/TiO2 composite structure towards sufficient use of solar energy. Chem. Commun. 2011, 47, 4231−4233.  doi: 10.1039/c0cc04770h

    15. [15]

      Tsukamoto, D.; Ikeda, M.; Shiraishi, Y.; Hara, N.; Ichikuni, N.; Tanaka, S.; Hirai, T. Selective photocatalytic oxidation of alcohols to aldehydes in water by TiO2 partially coated with WO3. Chem. Eur. J. 2011, 17, 9816−9824.  doi: 10.1002/chem.201100166

    16. [16]

      Nah, Y. C.; Ghicov, A.; Kim, D.; Berger, S.; Schmuki, P. TiO2-WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties. J. Am. Chem. Soc. 2008, 130, 16154−16155.  doi: 10.1021/ja807106y

    17. [17]

      Puddu, V.; Mokay, R.; Puma, G. L. Novel one step hydrothermal synthesis of TiO2/WO3 nanocomposites with enhanced photocatalytic activity. Chem. Commun. 2007, 4749−4751.

    18. [18]

      Liu, K. I.; Hsueh, Y. C.; Chen, H. S.; Perng, T. P. Mesoporous TiO2/WO3 hollow fibers with interior interconnected nanotubes for photocatalytic application. J. Mater. Chem. A 2014, 2, 5387−5393.  doi: 10.1039/c3ta15007k

    19. [19]

      Rawal, S. B.; Bera, S.; Lee, W. I. Visible-light photocatalytic properties of W18O49/TiO2 and WO3/TiO2 heterocomposites. Catal. Lett. 2012, 142, 1482−1488.  doi: 10.1007/s10562-012-0924-z

    20. [20]

      Reyes-Gil, K. R.; Stephens, Z. D.; Stavila, V.; Robinson, D. B. Composite WO3/TiO2 nanostructures for high electrochromic activity. ACS Appl. Mater. Inter. 2015, 7, 2202−2213.  doi: 10.1021/am5050696

    21. [21]

      Richardson, J. J.; Bjornmalm, M.; Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science 2015, 348, 2490−2491.

    22. [22]

      Li, H.; Pang, S.; Wu, S.; Feng, X.; Mullen, K.; Bubeck, C. Layer-by-layer assembly and UV photoreduction of graphene-polyoxometalate composite films for electronics. J. Am. Chem. Soc. 2011, 133, 9423−9429.  doi: 10.1021/ja201594k

    23. [23]

      Alexander, M. F.; Fialkowski, M.; Alexander, M.; Alexander, M.; Fialkowski, K. M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J.; Grzybowski, B. A. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 2006, 312, 420−424.  doi: 10.1126/science.1125124

    24. [24]

      Xiao, F.; Wang, F.; Fu, Z.; Zheng, Y. A green and facile self-assembly preparation of gold nanoparticles/ZnO nanocomposite for photocatalytic and photoelectrochemical applications. J. Mater. Chem. 2012, 22, 2868−2877.  doi: 10.1039/c2jm15122g

    25. [25]

      Weng, B.; Niu, N.; Zhang, N.; Tang, Z. R.; Xu, Y. J. A simple yet efficient visible-light-driven CdS nanowires-carbon nanotube 1D-1D nanocomposite photocatalyst. J. Catal. 2014, 309, 146−155.  doi: 10.1016/j.jcat.2013.09.013

    26. [26]

      Chen, Z.; Liu, S.; Yang, M. Q.; Xu, Y. J. Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water. ACS Appl. Mater. Inter. 2013, 5, 4309−4319.  doi: 10.1021/am4010286

    27. [27]

      Zhang, J.; X, F. X.; Xiao, G.; Liu, B. Linker-assisted assembly of 1D TiO2 nanobelts/3D CdS nanospheres hybrid heterostructure as efficient visible light photocatalyst. Appl. Catal. A: Gen. 2016, 521, 50−56.  doi: 10.1016/j.apcata.2015.10.046

    28. [28]

      Liu, S.; Weng, B.; Tang, Z. R.; Xu, Y. J. Constructing one-dimensional silver nanowire doped reduced graphene oxide integrated with CdS nanowire network hybrid structures toward artificial photosynthesis. Nanoscale 2015, 7, 7861−866.

    29. [29]

      Zhang, J.; X, F. X.; Xiao, G.; Liu, B. Assembly of a CdS quantum dot-TiO2 nanobelt heterostructure for photocatalytic application: towards an efficient visible light photocatalyst via facile surface charge tuning. New J. Chem. 2015, 39, 279−286.  doi: 10.1039/C4NJ01346H

    30. [30]

      Zhang, J.; X, F. X. Modulation of interfacial charge transfer by self-assembly of single-layer graphene enwrapped onedimensional semiconductors toward photoredox catalysis. J. Mater. Chem. A 2017, 5, 23681−23693.  doi: 10.1039/C7TA08415C

    31. [31]

      Weng, B.; Wu, J.; Zhang, N.; Xu, Y. J. Observing the role of graphene in boosting the two-electron reduction of oxygen in graphene-WO3 nanorod photocatalysts. Langmuir 2014, 30, 5574−5584.  doi: 10.1021/la4048566

    32. [32]

      Xiao, F. X.; Miao, J.; Wang, H. Y.; Liu, B. Self-assembly of hierarchically ordered CdS quantum dots-TiO2 nanotube array heterostructures as efficient visible light photocatalysts for photoredox applications. J. Mater. Chem. A 2013, 1, 12229−122238.  doi: 10.1039/c3ta12856c

    33. [33]

      Xiao, F. X.; Zeng, Z.; Liu, B. Bridging the gap: electron relay and plasmonic sensitization of metal nanocrystals for metal clusters. J. Am. Chem. Soc. 2015, 137, 10735−10744.  doi: 10.1021/jacs.5b06323

    34. [34]

      Xiao, F. X.; Zeng, Z.; Hsu, S. H.; Chen, H. M.; Liu, B. Light-induced in situ transformation of metal clusters to metal nanocrystals for photocatalysis. ACS Appl. Mater. Inter. 2015, 7, 28105−28109.  doi: 10.1021/acsami.5b09091

    35. [35]

      Huang, L.; Xu, H.; Li, Y.; Li, H.; Cheng, X.; Xia, J.; Xu, Y.; Cai, G. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity. Dalton Trans. 2013, 42, 8606−8616.  doi: 10.1039/c3dt00115f

    36. [36]

      Xiao, F. X. Construction of highly ordered ZnO-TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application. ACS Appl. Mater. Inter. 2012, 4, 7055−7063.  doi: 10.1021/am302462d

    37. [37]

      Zhang, Y.; Zhang, N.; Tang, Z. R.; Xu, Y. J. Graphene oxide as a surfactant and support for in-situ synthesis of Au-Pd nanoalloys with improved visible light photocatalytic activity. J. Phys. Chem. C 2014, 118, 5299−5308.  doi: 10.1021/jp410911j

    38. [38]

      Yuan, L.; Yang, M. Q.; Xu, Y. J. Tuning the surface charge of graphene for self-assembly synthesis of a SnNb2O6 nanosheet-graphene (2D-2D) nanocomposite with enhanced visible light photoactivity. Nanoscale 2014, 6, 6335−6345.  doi: 10.1039/c4nr00116h

  • 加载中
    1. [1]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    2. [2]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    3. [3]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    8. [8]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    9. [9]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    10. [10]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    11. [11]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    12. [12]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    13. [13]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    14. [14]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    15. [15]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    16. [16]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    17. [17]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    18. [18]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    19. [19]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    20. [20]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

Metrics
  • PDF Downloads(2)
  • Abstract views(202)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return