Citation: Lin GENG, Wei-Hui FANG, Lei ZHANG, Jian ZHANG. Gadolinium Pivalate Complex as a Precursor for the Synthesis of Titanium Oxo Clusters: Solvent Influence and Structural Analysis[J]. Chinese Journal of Structural Chemistry, ;2020, 39(6): 1063-1069. doi: 10.14102/j.cnki.0254-5861.2011-2551 shu

Gadolinium Pivalate Complex as a Precursor for the Synthesis of Titanium Oxo Clusters: Solvent Influence and Structural Analysis

  • Corresponding author: Wei-Hui FANG, fwh@fjirsm.ac.cn
  • Received Date: 26 July 2019
    Accepted Date: 15 October 2019

    Fund Project: the National Natural Science Foundation of China 21771181the National Natural Science Foundation of China 21673238Youth Innovation Promotion Association CAS 2017345Shanghai Key Laboratory of Rare Earth Functional Materials and Natural Science Foundation of Fujian Province 2017J05036

Figures(5)

  • In this text, we present researches on the synthesis of polyoxo-titanium clusters (PTCs) by the use of gadolinium pivalate precursor. During the synthesis process, we discover that solvents play an important role. When acetonitrile was used as solvent, Ti8Gd(μ2-O)(μ3-O)5(Sal)5(OPiv)2(μ2-OiPr)3(μ-OiPr)8 (PTC-82) (H2Sal = salicylic acid, HOPiv = pivalic acid) was obtained. When N, N-dimethylformamide (DMF) was used as solvent under the same reaction conditions, Ti4Gd2(μ3-O)2(Sal)4(OPiv)4(μ2-OiPr)2(μ-OiPr)4(DMF)2 (PTC-83) was synthesized. The solid-state UV absorption spectra revealed that the dopant of lanthanide and the incorporation of salicylic acid ligands have successfully narrowed the bandgap of PTCs. In addition, they exhibited rapid and reproducible photo-responses.
  • 加载中
    1. [1]

      Shen, S.; Chen, J.; Wang, M.; Sheng, X.; Chen, X.; Feng, X.; Mao, S. S. Titanium dioxide nanostructures for photoelectrochemical applications. Prog. Mater. Sci. 2018, 98, 299–385.  doi: 10.1016/j.pmatsci.2018.07.006

    2. [2]

      Zhang, H.; Ma, L.; Ming, J.; Liu, B.; Zhao, Y.; Hou, Y.; Ding, Z.; Xu, C.; Zhang, Z.; Long, J. Amorphous Ta2OxNy-enwrapped TiO2 rutile nanorods for enhanced solar photoelectrochemical water splitting. Appl. Catal. B-Environ. 2019, 243, 481–489.  doi: 10.1016/j.apcatb.2018.10.024

    3. [3]

      Chen, X.; Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959.  doi: 10.1021/cr0500535

    4. [4]

      Liu, J. X.; Gao, M. Y.; Fang, W. H.; Zhang, L.; Zhang, J. Frontispiece: bandgap engineering of titanium-oxo clusters: labile surface sites used for ligand substitution and metal incorporation. Angew. Chem. Int. Ed. 2016, 55, 5160–5165.  doi: 10.1002/anie.201510455

    5. [5]

      Fang, W. H.; Wang, J. F.; Zhang, L.; Zhang, J. Titanium-oxo cluster based precise assembly for multidimensional materials. Chem. Mater. 2017, 29, 2681–2684.  doi: 10.1021/acs.chemmater.7b00324

    6. [6]

      Fang, W. H.; Zhang, L.; Zhang, J. Assembly of titanium-oxo cations with copper-halide anions to form supersalt-type cluster-based materials. Chem. Commun. 2017, 53, 3949–3951.  doi: 10.1039/C7CC01443K

    7. [7]

      Li, N.; Matthews, P. D.; Luo, H. K.; Wright, D. S. Novel properties and potential applications of functional ligand-modified polyoxotitanate cages. Chem. Commun. 2016, 52, 11180–11190.  doi: 10.1039/C6CC03788G

    8. [8]

      Matthews, P. D.; King, T. C.; Wright, D. S. Structure, photochemistry and applications of metal-doped polyoxotitanium alkoxide cages. Chem. Commun. 2014, 50, 12815–12823.  doi: 10.1039/C4CC04421E

    9. [9]

      Eslava, S.; Hengesbach, F.; McPartlin, M.; Wright, D. S. Heterometallic cobalt(ii)-titanium(iv) oxo cages; key building blocks for hybrid materials. Chem. Commun. 2010, 46, 4701–4703.  doi: 10.1039/c0cc00016g

    10. [10]

      Eslava, S.; Goodwill, B. P. R.; McPartlin, M. D.; Wright, D. Extending the family of titanium heterometallic-oxo-alkoxy cages. Inorg. Chem. 2011, 50, 5655–5662.  doi: 10.1021/ic200350j

    11. [11]

      Chen, Y.; Jarzembska, K. N.; Trzop, E.; Zhang, L.; Coppens, P. How does substitutional doping affect visible light absorption in a series of homodisperse Ti11 polyoxotitanate nanoparticles? Chem. Eur. J. 2015, 21, 11538–11544.  doi: 10.1002/chem.201500961

    12. [12]

      Artner, C.; Koyun, A.; Czakler, M.; Schubert, U. Mixed-metal oxo clusters structurally derived from Ti6O4(OR)8(OOCR′)8. Eur. J. Inorg. Chem. 2014, 29, 5008–5014.

    13. [13]

      Daniele, S.; Hubertpfalzgraf, L. G.; Daran, J. C.; Halut, S. Synthesis and molecular structure of [Sm4Ti(μ5-O)(μ3-OR)2(μ-OR)6(OR)6] (R = Pri): a novel framework for heteronuclear alkoxides with a 1: 4 stoichiometry. Polyhedron 1994, 13, 927–932.  doi: 10.1016/S0277-5387(00)83012-0

    14. [14]

      Lv, Y.; Cai, Z.; Yan, D.; Su, C.; Li, W.; Chen, W.; Ren, Z.; Wei, Y.; Mi, O.; Zhang, C.; Wright, D. S. Novel Eu-containing titania composites derived from a new Eu(iii)-doped polyoxotitanate cage. RSC Adv. 2016, 6, 57–60.  doi: 10.1039/C5RA22857C

    15. [15]

      Artner, C.; Kronister, S.; Czakler, M.; Schubert, U. Ion-size-dependent formation of mixed titanium/lanthanide oxo clusters. Eur. J. Inorg. Chem. 2014, 2014, 5596–5602.  doi: 10.1002/ejic.201402670

    16. [16]

      Li, N.; Garcia-Rodriguez, R.; Matthews, P. D.; Luo, H. K.; Wright, D. S. Synthesis, structure and paramagnetic NMR analysis of a series of lanthanide-containing [LnTi6O3(OiPr)9(salicylate)6] cages. Dalton Trans. 2017, 46, 4287–4295.  doi: 10.1039/C7DT00049A

    17. [17]

      Lv, Y.; Willkomm, J.; Leskes, M.; Steiner, A.; King, T. C.; Gan, L.; Reisner, E.; Wood, P. T.; Wright, D. S. Formation of Ti28Ln cages, the highest nuclearity polyoxotitanates (Ln = La, Ce). Chem. Eur. J. 2012, 18, 11867–11870.  doi: 10.1002/chem.201201827

    18. [18]

      Lv, Y.; Du, W.; Ren, Y.; Cai, Z.; Yu, K.; Zhang, C.; Chen, Z.; Wright, D. S. An integrated electrochromic supercapacitor based on nanostructured Er-containing titania using an Er(iii)-doped polyoxotitanate cage. Inorg. Chem. Front. 2016, 3, 1119–1123.  doi: 10.1039/C6QI00114A

    19. [19]

      Wang, S.; Su, H. C.; Yu, L.; Zhao, X. W.; Qian, L. W.; Zhu, Q. Y.; Dai, J. Fluorescence and energy transfer properties of heterometallic lanthanide-titanium oxo clusters coordinated with anthracenecarboxylate ligand. Dalton Trans. 2015, 44, 1882–1888.  doi: 10.1039/C4DT02968B

    20. [20]

      Zhang, G. L.; Wang, S.; Hou, J. L.; Mo, C. J.; Que, C. J.; Zhu, Q. Y.; Dai, J. A lanthanide-titanium (LnTi11) oxo-cluster, a potential molecule based fluorescent labelling agent and photocatalyst. Dalton Trans. 2016, 45, 17681–17686.  doi: 10.1039/C6DT03034C

    21. [21]

      Lu, D. F.; Kong, X. J.; Lu, T. B.; Long, L. S.; Zheng, L. S. Heterometallic lanthanide-titanium oxo clusters: a new family of water oxidation catalysts. Inorg. Chem. 2017, 56, 1057–1060.  doi: 10.1021/acs.inorgchem.6b03072

    22. [22]

      Zheng, H.; Du, M. H.; Lin, S. C.; Tang, Z. C.; Kong, X. J.; Long, L. S.; Zheng, L. S. Assembly of a wheel-like Eu24Ti8 cluster under the guidance of high-resolution electrospray ionization mass spectrometry. Angew. Chem. Int. Ed. 2018, 57, 10976–10979.  doi: 10.1002/anie.201806757

    23. [23]

      Hubert-Pfalzgraf, L. G.; Abada, V.; Vaissermann, J. Formation of mixed-metal alkoxides mediated by the reactivity of coordinated pinacol: synthesis and molecular structures of Ce2Ti2(μ3-O)2(μ, η2-OCMe2CMe2O)4(OPri)4(PriOH)2 and of Ce2Nb2(μ3-O)2(μ, η2-OCMe2CMe2O)4(OPri)6. Polyhedron 1999, 18, 3497–3504.  doi: 10.1016/S0277-5387(99)00281-8

    24. [24]

      Westin, G.; Norrestam, R.; Nygren, M.; Wijk, M. Synthesis, characterization, and structure determination of a new heterometallic oxoalkoxide: Er2Ti4O2(OC2H5)18(HOC2H5)2. J. Solid State Chem. 1998, 135, 149–158.  doi: 10.1006/jssc.1997.7616

    25. [25]

      Berger, E.; Westin, G. Structure of a hepta-nuclear termetallic oxo-alkoxide: Eu3K3TiO2(OBut)11(OMe/OH)(HOBut). J. Sol-Gel Sci. Techn. 2010, 53, 681–688.  doi: 10.1007/s10971-010-2150-8

    26. [26]

      Ojea, M. J. H.; Lorusso, G.; Craig, G. A.; Wilson, C.; Evangelisti, M.; Murrie, M. A topologically unique alternating {Co3Gd3} magnetocaloric ring. Chem. Commun. 2017, 53, 4799–4802.

    27. [27]

      Zhang, G. L.; Wang, S.; Hou, J. L.; Mo, C. J.; Que, C. J.; Zhu, Q. Y.; Dai, J. A lanthanide-titanium (LnTi11) oxo-cluster, a potential molecule based fluorescent labelling agent and photocatalyst. Dalton Trans. 2016, 45, 17681–17686.

    28. [28]

      Luo, W.; Hou, J. L.; Zou, D. H.; Cui, L. N.; Zhu, Q. Y.; Dai, J. Lanthanide-titanium-oxalate clusters and their degradation products, photocurrent response and photocatalytic behaviours. New J. Chem. 2018, 42, 11629–11634.

    29. [29]

      Huang, C. H.; Sun, H. Y.; Zhang, D. L.; Xu, G. X.; Han, Y. Z.; Shi, N. C. Structure studies on rare earth carboxylate-synthesis and crystal structure study of {dy[(CH3)3CCOOl3(H2O)3}[(CH3)3CCOOH]2 (V). Nat. Sci. 1992, 2, 113–118.

    30. [30]

      Zheng, Y. Z.; Evangelisti, M.; Winpenny, R. E. P. Co-Gd phosphonate complexes as magnetic refrigerants. Chem. Sci. 2011, 2, 99–102.

    31. [31]

      Wendlandt, W. W.; Hecht, H. G. Reflectance spectroscopy, interscience. New York 1966.

  • 加载中
    1. [1]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    2. [2]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    3. [3]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    4. [4]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    5. [5]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    6. [6]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    7. [7]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    8. [8]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    9. [9]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    10. [10]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    11. [11]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    12. [12]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    13. [13]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    14. [14]

      Yijia JiaoYuzhu LiYuting ZhouPeipei CenYi DingYan GuoXiangyu Liu . Structural evolution and zero-field SMM behaviour in ferromagnetically-coupled disk-type Co7 clusters bearing exclusively end-on azido bridges. Chinese Chemical Letters, 2024, 35(8): 109082-. doi: 10.1016/j.cclet.2023.109082

    15. [15]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

Metrics
  • PDF Downloads(3)
  • Abstract views(238)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return